A Conjugate of an EGFR-Binding Peptide and Doxorubicin Shows Selective Toxicity to Triple-Negative Breast Cancer Cells.

IF 3.5 3区 医学 Q2 CHEMISTRY, MEDICINAL ACS Medicinal Chemistry Letters Pub Date : 2024-12-12 eCollection Date: 2025-01-09 DOI:10.1021/acsmedchemlett.4c00480
Phi-Phung Than, Shih-Jing Yao, Emad Althagafi, Kamaljit Kaur
{"title":"A Conjugate of an EGFR-Binding Peptide and Doxorubicin Shows Selective Toxicity to Triple-Negative Breast Cancer Cells.","authors":"Phi-Phung Than, Shih-Jing Yao, Emad Althagafi, Kamaljit Kaur","doi":"10.1021/acsmedchemlett.4c00480","DOIUrl":null,"url":null,"abstract":"<p><p>Selective targeting of cancer cells via overexpressed cell-surface receptors is a promising strategy to enhance chemotherapy efficacy and minimize off-target side effects. In this study, we designed peptide 31 (YHWYGYTPERVI) to target the overexpressed epidermal growth factor receptor (EGFR) in triple-negative breast cancer (TNBC) cells. Peptide 31 is internalized by TNBC cells through EGFR-mediated endocytosis and shares sequence and structural similarities with human EGF (hEGF), a natural EGFR ligand. Unlike hEGF, peptide 31 does not induce cell migration in TNBC cells. A novel conjugate of peptide 31 with doxorubicin (Dox) retains selectivity for TNBC cells and exhibits significant toxicity comparable to that of unconjugated Dox. Importantly, this conjugate shows no toxicity toward normal breast epithelial cells up to a high concentration (25 μM). Thus, peptide 31 serves as a versatile targeting ligand for developing novel conjugates with high selectivity for EGFR-positive cancers.</p>","PeriodicalId":20,"journal":{"name":"ACS Medicinal Chemistry Letters","volume":"16 1","pages":"109-115"},"PeriodicalIF":3.5000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11726362/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Medicinal Chemistry Letters","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acsmedchemlett.4c00480","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/9 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Selective targeting of cancer cells via overexpressed cell-surface receptors is a promising strategy to enhance chemotherapy efficacy and minimize off-target side effects. In this study, we designed peptide 31 (YHWYGYTPERVI) to target the overexpressed epidermal growth factor receptor (EGFR) in triple-negative breast cancer (TNBC) cells. Peptide 31 is internalized by TNBC cells through EGFR-mediated endocytosis and shares sequence and structural similarities with human EGF (hEGF), a natural EGFR ligand. Unlike hEGF, peptide 31 does not induce cell migration in TNBC cells. A novel conjugate of peptide 31 with doxorubicin (Dox) retains selectivity for TNBC cells and exhibits significant toxicity comparable to that of unconjugated Dox. Importantly, this conjugate shows no toxicity toward normal breast epithelial cells up to a high concentration (25 μM). Thus, peptide 31 serves as a versatile targeting ligand for developing novel conjugates with high selectivity for EGFR-positive cancers.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Medicinal Chemistry Letters
ACS Medicinal Chemistry Letters CHEMISTRY, MEDICINAL-
CiteScore
7.30
自引率
2.40%
发文量
328
审稿时长
1 months
期刊介绍: ACS Medicinal Chemistry Letters is interested in receiving manuscripts that discuss various aspects of medicinal chemistry. The journal will publish studies that pertain to a broad range of subject matter, including compound design and optimization, biological evaluation, drug delivery, imaging agents, and pharmacology of both small and large bioactive molecules. Specific areas include but are not limited to: Identification, synthesis, and optimization of lead biologically active molecules and drugs (small molecules and biologics) Biological characterization of new molecular entities in the context of drug discovery Computational, cheminformatics, and structural studies for the identification or SAR analysis of bioactive molecules, ligands and their targets, etc. Novel and improved methodologies, including radiation biochemistry, with broad application to medicinal chemistry Discovery technologies for biologically active molecules from both synthetic and natural (plant and other) sources Pharmacokinetic/pharmacodynamic studies that address mechanisms underlying drug disposition and response Pharmacogenetic and pharmacogenomic studies used to enhance drug design and the translation of medicinal chemistry into the clinic Mechanistic drug metabolism and regulation of metabolic enzyme gene expression Chemistry patents relevant to the medicinal chemistry field.
期刊最新文献
Discovery of a Phosphodiesterase 7A Inhibitor of High Isozyme Selectivity Exhibiting In Vivo Anti-Osteoporotic Effects. Tetrazole Is a Novel Zinc Binder Chemotype for Carbonic Anhydrase Inhibition. Discovery of a Potent Triazole-Based Reversible Targeted Covalent Inhibitor of Cruzipain. Expanding the Chemical Space of Reverse Fosmidomycin Analogs. N-Arylsulfonylated C-Homoaporphines as a New Class of Antiplatelet and Antimicrobial Agents.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1