Tetrazole Is a Novel Zinc Binder Chemotype for Carbonic Anhydrase Inhibition.

IF 3.5 3区 医学 Q2 CHEMISTRY, MEDICINAL ACS Medicinal Chemistry Letters Pub Date : 2024-12-25 eCollection Date: 2025-01-09 DOI:10.1021/acsmedchemlett.4c00562
Simone Giovannuzzi, Andrea Angeli, Paloma Begines, Marta Ferraroni, Alessio Nocentini, Claudiu T Supuran
{"title":"Tetrazole Is a Novel Zinc Binder Chemotype for Carbonic Anhydrase Inhibition.","authors":"Simone Giovannuzzi, Andrea Angeli, Paloma Begines, Marta Ferraroni, Alessio Nocentini, Claudiu T Supuran","doi":"10.1021/acsmedchemlett.4c00562","DOIUrl":null,"url":null,"abstract":"<p><p>The tetrazole group is here proposed as a zinc-binding warhead for the inhibition of the metalloenzyme carbonic anhydrases. A set of synthesized derivatives incorporating the tetrazole moiety were evaluated as inhibitors against a panel of human isoforms, exhibiting <i>K</i> <sub>I</sub> values spanning between the submicromolar and low-to-medium micromolar ranges (0.62-19.6 μM). X-ray crystallographic studies were conducted to gain insights into their modes of binding to the target enzyme. These findings mark a significant advancement in the search for inhibitory chemotypes other than classical sulfonamides.</p>","PeriodicalId":20,"journal":{"name":"ACS Medicinal Chemistry Letters","volume":"16 1","pages":"163-166"},"PeriodicalIF":3.5000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11726385/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Medicinal Chemistry Letters","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acsmedchemlett.4c00562","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/9 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

The tetrazole group is here proposed as a zinc-binding warhead for the inhibition of the metalloenzyme carbonic anhydrases. A set of synthesized derivatives incorporating the tetrazole moiety were evaluated as inhibitors against a panel of human isoforms, exhibiting K I values spanning between the submicromolar and low-to-medium micromolar ranges (0.62-19.6 μM). X-ray crystallographic studies were conducted to gain insights into their modes of binding to the target enzyme. These findings mark a significant advancement in the search for inhibitory chemotypes other than classical sulfonamides.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
四唑是一种抑制碳酸酐酶的新型锌结合剂化学型。
本文提出了四唑基团作为锌结合战斗部,用于抑制金属酶碳酸酐酶。一组含有四氮唑片段的合成衍生物被评估为人类同种异构体的抑制剂,其K I值在亚微摩尔和低至中微摩尔范围(0.62-19.6 μM)之间。进行了x射线晶体学研究,以深入了解它们与靶酶的结合模式。这些发现标志着在寻找除经典磺胺类药物以外的抑制性化学型方面取得了重大进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Medicinal Chemistry Letters
ACS Medicinal Chemistry Letters CHEMISTRY, MEDICINAL-
CiteScore
7.30
自引率
2.40%
发文量
328
审稿时长
1 months
期刊介绍: ACS Medicinal Chemistry Letters is interested in receiving manuscripts that discuss various aspects of medicinal chemistry. The journal will publish studies that pertain to a broad range of subject matter, including compound design and optimization, biological evaluation, drug delivery, imaging agents, and pharmacology of both small and large bioactive molecules. Specific areas include but are not limited to: Identification, synthesis, and optimization of lead biologically active molecules and drugs (small molecules and biologics) Biological characterization of new molecular entities in the context of drug discovery Computational, cheminformatics, and structural studies for the identification or SAR analysis of bioactive molecules, ligands and their targets, etc. Novel and improved methodologies, including radiation biochemistry, with broad application to medicinal chemistry Discovery technologies for biologically active molecules from both synthetic and natural (plant and other) sources Pharmacokinetic/pharmacodynamic studies that address mechanisms underlying drug disposition and response Pharmacogenetic and pharmacogenomic studies used to enhance drug design and the translation of medicinal chemistry into the clinic Mechanistic drug metabolism and regulation of metabolic enzyme gene expression Chemistry patents relevant to the medicinal chemistry field.
期刊最新文献
Discovery of a Phosphodiesterase 7A Inhibitor of High Isozyme Selectivity Exhibiting In Vivo Anti-Osteoporotic Effects. Tetrazole Is a Novel Zinc Binder Chemotype for Carbonic Anhydrase Inhibition. Discovery of a Potent Triazole-Based Reversible Targeted Covalent Inhibitor of Cruzipain. Expanding the Chemical Space of Reverse Fosmidomycin Analogs. N-Arylsulfonylated C-Homoaporphines as a New Class of Antiplatelet and Antimicrobial Agents.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1