{"title":"Triplicate Dynamic Cell Culture Platform for Enhanced Reproducibility in Anti-Cancer Drug Testing.","authors":"Yu-Lun Lu, Chiao-Min Lin, Jen-Huang Huang","doi":"10.1021/acsbiomaterials.4c02142","DOIUrl":null,"url":null,"abstract":"<p><p>The development of stable and standardized in vitro cytotoxicity testing models is essential for drug discovery and personalized medicine. Microfluidic technologies, recognized for their small size, reduced reagent consumption, and control over experimental variables, have gained considerable attention. However, challenges associated with external pumps, particularly inconsistencies between individual pumping systems, have limited the real-world application of cancer-on-a-chip technology. This study introduces a novel triplicate cell culture system (Tri-CS) that simultaneously supports dynamic cultures in three independent units using a single peristaltic pump, ensuring consistent flow conditions. Our findings demonstrate that the Tri-CS significantly reduces variability compared to individual pump systems, enhancing the reliability of anticancer drug cytotoxicity testing. Furthermore, we evaluated gemcitabine cytotoxicity, which shows enhanced drug efficacy in dynamic conditions. Fluorescein diffusion tests revealed greater diffusion efficiency in dynamic cultures, which contributed to the higher observed drug efficacy. The potential for broader application of the Tri-CS, including its compatibility with commercially available transwells and the opportunity for use in more complex cancer-on-chip models, positions this system as a valuable tool for advancing microphysiological systems in preclinical research.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":" ","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acsbiomaterials.4c02142","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
The development of stable and standardized in vitro cytotoxicity testing models is essential for drug discovery and personalized medicine. Microfluidic technologies, recognized for their small size, reduced reagent consumption, and control over experimental variables, have gained considerable attention. However, challenges associated with external pumps, particularly inconsistencies between individual pumping systems, have limited the real-world application of cancer-on-a-chip technology. This study introduces a novel triplicate cell culture system (Tri-CS) that simultaneously supports dynamic cultures in three independent units using a single peristaltic pump, ensuring consistent flow conditions. Our findings demonstrate that the Tri-CS significantly reduces variability compared to individual pump systems, enhancing the reliability of anticancer drug cytotoxicity testing. Furthermore, we evaluated gemcitabine cytotoxicity, which shows enhanced drug efficacy in dynamic conditions. Fluorescein diffusion tests revealed greater diffusion efficiency in dynamic cultures, which contributed to the higher observed drug efficacy. The potential for broader application of the Tri-CS, including its compatibility with commercially available transwells and the opportunity for use in more complex cancer-on-chip models, positions this system as a valuable tool for advancing microphysiological systems in preclinical research.
期刊介绍:
ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics:
Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology
Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions
Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis
Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering
Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends
Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring
Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration
Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials
Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture