Ligand Design with Accelerated Disulfide Formation with Serum Albumin to Extend Blood Retention.

IF 3.5 3区 医学 Q2 CHEMISTRY, MEDICINAL ACS Medicinal Chemistry Letters Pub Date : 2024-12-16 eCollection Date: 2025-01-09 DOI:10.1021/acsmedchemlett.4c00503
Song Qi, Zixuan Liu, Keitaro Suyama, Yuichi Tsuchiya, Jedidiah Canarejo, Khanh Quoc Phan, Noriko Yutsudo, Atsushi Shimada, Takeshi Hirota, Ichiro Ieiri, Akihiro Kishimura, Takahiro Muraoka, Takeru Nose, Takeshi Mori, Yoshiki Katayama
{"title":"Ligand Design with Accelerated Disulfide Formation with Serum Albumin to Extend Blood Retention.","authors":"Song Qi, Zixuan Liu, Keitaro Suyama, Yuichi Tsuchiya, Jedidiah Canarejo, Khanh Quoc Phan, Noriko Yutsudo, Atsushi Shimada, Takeshi Hirota, Ichiro Ieiri, Akihiro Kishimura, Takahiro Muraoka, Takeru Nose, Takeshi Mori, Yoshiki Katayama","doi":"10.1021/acsmedchemlett.4c00503","DOIUrl":null,"url":null,"abstract":"<p><p>We proposed a novel ligand for the interaction with human serum albumin (HSA) to extend the blood half-life of small molecular weight therapeutics. The ligand features an alkyl chain and an activated disulfide to allow binding to the hydrophobic pockets of HSA and the formation of disulfide to Cys34 of HSA, thereby minimizing the initial renal clearance. The dual nature of the ligand-HSA bonding was expected to give the ligand long blood retention. After 1 min of mixing with HSA, the ligand showed higher binding (1.7 times) than that of a control ligand (containing only activated disulfide). After intravenous injection to mice, the ligand half-lives were 1.6 and 9.2 times longer than those of control ligands with the active disulfide alone and with the alkyl chain alone, respectively. The proposed ligand has the potential to act as a platform for extending the half-life of small therapeutics in vivo.</p>","PeriodicalId":20,"journal":{"name":"ACS Medicinal Chemistry Letters","volume":"16 1","pages":"144-148"},"PeriodicalIF":3.5000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11726352/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Medicinal Chemistry Letters","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acsmedchemlett.4c00503","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/9 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

We proposed a novel ligand for the interaction with human serum albumin (HSA) to extend the blood half-life of small molecular weight therapeutics. The ligand features an alkyl chain and an activated disulfide to allow binding to the hydrophobic pockets of HSA and the formation of disulfide to Cys34 of HSA, thereby minimizing the initial renal clearance. The dual nature of the ligand-HSA bonding was expected to give the ligand long blood retention. After 1 min of mixing with HSA, the ligand showed higher binding (1.7 times) than that of a control ligand (containing only activated disulfide). After intravenous injection to mice, the ligand half-lives were 1.6 and 9.2 times longer than those of control ligands with the active disulfide alone and with the alkyl chain alone, respectively. The proposed ligand has the potential to act as a platform for extending the half-life of small therapeutics in vivo.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Medicinal Chemistry Letters
ACS Medicinal Chemistry Letters CHEMISTRY, MEDICINAL-
CiteScore
7.30
自引率
2.40%
发文量
328
审稿时长
1 months
期刊介绍: ACS Medicinal Chemistry Letters is interested in receiving manuscripts that discuss various aspects of medicinal chemistry. The journal will publish studies that pertain to a broad range of subject matter, including compound design and optimization, biological evaluation, drug delivery, imaging agents, and pharmacology of both small and large bioactive molecules. Specific areas include but are not limited to: Identification, synthesis, and optimization of lead biologically active molecules and drugs (small molecules and biologics) Biological characterization of new molecular entities in the context of drug discovery Computational, cheminformatics, and structural studies for the identification or SAR analysis of bioactive molecules, ligands and their targets, etc. Novel and improved methodologies, including radiation biochemistry, with broad application to medicinal chemistry Discovery technologies for biologically active molecules from both synthetic and natural (plant and other) sources Pharmacokinetic/pharmacodynamic studies that address mechanisms underlying drug disposition and response Pharmacogenetic and pharmacogenomic studies used to enhance drug design and the translation of medicinal chemistry into the clinic Mechanistic drug metabolism and regulation of metabolic enzyme gene expression Chemistry patents relevant to the medicinal chemistry field.
期刊最新文献
Discovery of a Phosphodiesterase 7A Inhibitor of High Isozyme Selectivity Exhibiting In Vivo Anti-Osteoporotic Effects. Tetrazole Is a Novel Zinc Binder Chemotype for Carbonic Anhydrase Inhibition. Discovery of a Potent Triazole-Based Reversible Targeted Covalent Inhibitor of Cruzipain. Expanding the Chemical Space of Reverse Fosmidomycin Analogs. N-Arylsulfonylated C-Homoaporphines as a New Class of Antiplatelet and Antimicrobial Agents.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1