Yunlei Zhang, Shiru Lin, Yaolu Niu, Xiaoping Zhou, Qingxian Lin
{"title":"Transcriptome response in a marine copepod under multigenerational exposure to ocean warming and Ni at an environmentally realistic concentration.","authors":"Yunlei Zhang, Shiru Lin, Yaolu Niu, Xiaoping Zhou, Qingxian Lin","doi":"10.1016/j.ecoenv.2024.117613","DOIUrl":null,"url":null,"abstract":"<p><p>Due to anthropogenic activities, coastal areas have been challenged with multi-stresses such as ocean warming and nickel (Ni) pollution. Currently, studies have concerned the combined effects of Ni and warming in marine organisms at the phenotypic level; however, the underlying molecular mechanisms are poorly known. In this study, a marine copepod Tigriopus japonicus was maintained under warming (+ 4℃) and an environmentally realistic level of Ni (20 μg/L) alone or combined for three generations (F0-F2). Transcriptome analysis was performed for the F2 individuals. We found that the gene transcripts of copepods were predominantly down-regulated after Ni and warming exposure. Based on the results of GO and KEGG analysis, chitin metabolism, detoxification, antioxidant, apoptosis, and energy metabolism were screened in this study. Among the above functions, the combined exposure enriched more differential expression genes and had a larger fold change compared to Ni exposure alone, suggesting that warming increased the negative effect of Ni on marine copepods from a molecular perspective. Specifically, the combined exposure exacerbated the down-regulation of defense, apoptosis, xenobiotic efflux, GSH system, and energy metabolism, as well as the up-regulation of detoxification and peroxidase system. Overall, this study indicates that both ocean warming and Ni pollution adversely affect the marine copepod T. japonicus from multigenerational transcriptome analysis, especially warming increased Ni toxicity to marine copepods, and our results also provide references to the mechanism concerning the effects of Ni and warming on marine copepods.</p>","PeriodicalId":303,"journal":{"name":"Ecotoxicology and Environmental Safety","volume":"289 ","pages":"117613"},"PeriodicalIF":6.2000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecotoxicology and Environmental Safety","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.ecoenv.2024.117613","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/13 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Due to anthropogenic activities, coastal areas have been challenged with multi-stresses such as ocean warming and nickel (Ni) pollution. Currently, studies have concerned the combined effects of Ni and warming in marine organisms at the phenotypic level; however, the underlying molecular mechanisms are poorly known. In this study, a marine copepod Tigriopus japonicus was maintained under warming (+ 4℃) and an environmentally realistic level of Ni (20 μg/L) alone or combined for three generations (F0-F2). Transcriptome analysis was performed for the F2 individuals. We found that the gene transcripts of copepods were predominantly down-regulated after Ni and warming exposure. Based on the results of GO and KEGG analysis, chitin metabolism, detoxification, antioxidant, apoptosis, and energy metabolism were screened in this study. Among the above functions, the combined exposure enriched more differential expression genes and had a larger fold change compared to Ni exposure alone, suggesting that warming increased the negative effect of Ni on marine copepods from a molecular perspective. Specifically, the combined exposure exacerbated the down-regulation of defense, apoptosis, xenobiotic efflux, GSH system, and energy metabolism, as well as the up-regulation of detoxification and peroxidase system. Overall, this study indicates that both ocean warming and Ni pollution adversely affect the marine copepod T. japonicus from multigenerational transcriptome analysis, especially warming increased Ni toxicity to marine copepods, and our results also provide references to the mechanism concerning the effects of Ni and warming on marine copepods.
期刊介绍:
Ecotoxicology and Environmental Safety is a multi-disciplinary journal that focuses on understanding the exposure and effects of environmental contamination on organisms including human health. The scope of the journal covers three main themes. The topics within these themes, indicated below, include (but are not limited to) the following: Ecotoxicology、Environmental Chemistry、Environmental Safety etc.