Optimized detection of calcium ion in serum using constant potential coulometry with metastable liquid-liquid contact doping enhanced PEDOT: PSS ink.

IF 4.8 2区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Bioelectrochemistry Pub Date : 2025-01-10 DOI:10.1016/j.bioelechem.2025.108903
Suyun Wei, Jie Zhao, Shaojun Ke, Mingjia Zou, Qingze Han, Guofeng Cui
{"title":"Optimized detection of calcium ion in serum using constant potential coulometry with metastable liquid-liquid contact doping enhanced PEDOT: PSS ink.","authors":"Suyun Wei, Jie Zhao, Shaojun Ke, Mingjia Zou, Qingze Han, Guofeng Cui","doi":"10.1016/j.bioelechem.2025.108903","DOIUrl":null,"url":null,"abstract":"<p><p>Highly stable calcium ion selective electrodes (Ca<sup>2+</sup>-ISEs) were developed by drop-casting a layer of poly(3,4-ethylenedioxythiophene): polystyrene sulfonate (PEDOT: PSS) as an ion-to-electron transfer layer onto Au electrode. The conductive PEDOT: PSS ink was prepared using a metastable liquid-liquid contact (MLLC) doping method, which induced phase separation, removed excess PSS, and significantly enhanced charge transfer kinetics and conductivity. The resulting Ca<sup>2+</sup>-ISEs exhibited excellent electrochemical performance. Potentiometric studies revealed a significant sensitivity of 33.1 ± 0.98 mV/decade (N = 3) with a high potential stability of 3.16 ± 2.53 μV/h. Importantly, Ca<sup>2+</sup>-ISEs combined with the constant potential coulometry method, the lower detection limit was optimized to 8.527 × 10<sup>-8</sup> M (LOD = 3σ/s, N = 3). The performance of the Ca<sup>2+</sup>-ISE system was evaluated in inactivated fetal bovine serum using constant potential coulometry, demonstrating the highest measurement accuracy compared to potentiometric and chronoamperometric. The enhanced PEDOT: PSS-MLLC based Ca<sup>2+</sup>-ISEs combined with the constant potential coulometry method developed in this research demonstrate considerable potential for clinical applications in blood ion analysis.</p>","PeriodicalId":252,"journal":{"name":"Bioelectrochemistry","volume":"163 ","pages":"108903"},"PeriodicalIF":4.8000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioelectrochemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.bioelechem.2025.108903","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Highly stable calcium ion selective electrodes (Ca2+-ISEs) were developed by drop-casting a layer of poly(3,4-ethylenedioxythiophene): polystyrene sulfonate (PEDOT: PSS) as an ion-to-electron transfer layer onto Au electrode. The conductive PEDOT: PSS ink was prepared using a metastable liquid-liquid contact (MLLC) doping method, which induced phase separation, removed excess PSS, and significantly enhanced charge transfer kinetics and conductivity. The resulting Ca2+-ISEs exhibited excellent electrochemical performance. Potentiometric studies revealed a significant sensitivity of 33.1 ± 0.98 mV/decade (N = 3) with a high potential stability of 3.16 ± 2.53 μV/h. Importantly, Ca2+-ISEs combined with the constant potential coulometry method, the lower detection limit was optimized to 8.527 × 10-8 M (LOD = 3σ/s, N = 3). The performance of the Ca2+-ISE system was evaluated in inactivated fetal bovine serum using constant potential coulometry, demonstrating the highest measurement accuracy compared to potentiometric and chronoamperometric. The enhanced PEDOT: PSS-MLLC based Ca2+-ISEs combined with the constant potential coulometry method developed in this research demonstrate considerable potential for clinical applications in blood ion analysis.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Bioelectrochemistry
Bioelectrochemistry 生物-电化学
CiteScore
9.10
自引率
6.00%
发文量
238
审稿时长
38 days
期刊介绍: An International Journal Devoted to Electrochemical Aspects of Biology and Biological Aspects of Electrochemistry Bioelectrochemistry is an international journal devoted to electrochemical principles in biology and biological aspects of electrochemistry. It publishes experimental and theoretical papers dealing with the electrochemical aspects of: • Electrified interfaces (electric double layers, adsorption, electron transfer, protein electrochemistry, basic principles of biosensors, biosensor interfaces and bio-nanosensor design and construction. • Electric and magnetic field effects (field-dependent processes, field interactions with molecules, intramolecular field effects, sensory systems for electric and magnetic fields, molecular and cellular mechanisms) • Bioenergetics and signal transduction (energy conversion, photosynthetic and visual membranes) • Biomembranes and model membranes (thermodynamics and mechanics, membrane transport, electroporation, fusion and insertion) • Electrochemical applications in medicine and biotechnology (drug delivery and gene transfer to cells and tissues, iontophoresis, skin electroporation, injury and repair). • Organization and use of arrays in-vitro and in-vivo, including as part of feedback control. • Electrochemical interrogation of biofilms as generated by microorganisms and tissue reaction associated with medical implants.
期刊最新文献
Corrigendum to "Analysis of electromagnetic response of cells and lipid membranes using a model-free method" [Bioelectrochemistry 152 (2023) 108444]. Corrigendum to "Molecular monolayers on silicon as substrates for biosensors" [Bioelectrochem. 80(1) (2010) 17-25]. Optimized detection of calcium ion in serum using constant potential coulometry with metastable liquid-liquid contact doping enhanced PEDOT: PSS ink. A carbon fiber modified with tin oxide/graphitic carbon nitride as an electrochemical indirect competitive immuno-sensor for ultrasensitive aflatoxin M1 detection. Rapid and receptor-free Prussian blue electrochemical sensor for the detection of pathogenic bacteria in blood.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1