Wolfram Höps, Marjan M Weiss, Ronny Derks, Jordi Corominas Galbany, Amber den Ouden, Simone van den Heuvel, Raoul Timmermans, Jos Smits, Tom Mokveld, Egor Dolzhenko, Xiao Chen, Arthur van den Wijngaard, Michael A Eberle, Helger G Yntema, Alexander Hoischen, Christian Gilissen, Lisenka E L M Vissers
{"title":"HiFi long-read genomes for difficult-to-detect, clinically relevant variants.","authors":"Wolfram Höps, Marjan M Weiss, Ronny Derks, Jordi Corominas Galbany, Amber den Ouden, Simone van den Heuvel, Raoul Timmermans, Jos Smits, Tom Mokveld, Egor Dolzhenko, Xiao Chen, Arthur van den Wijngaard, Michael A Eberle, Helger G Yntema, Alexander Hoischen, Christian Gilissen, Lisenka E L M Vissers","doi":"10.1016/j.ajhg.2024.12.013","DOIUrl":null,"url":null,"abstract":"<p><p>Clinical short-read exome and genome sequencing approaches have positively impacted diagnostic testing for rare diseases. Yet, technical limitations associated with short reads challenge their use for the detection of disease-associated variation in complex regions of the genome. Long-read sequencing (LRS) technologies may overcome these challenges, potentially qualifying as a first-tier test for all rare diseases. To test this hypothesis, we performed LRS (30× high-fidelity [HiFi] genomes) for 100 samples with 145 known clinically relevant germline variants that are challenging to detect using short-read sequencing and necessitate a broad range of complementary test modalities in diagnostic laboratories. We show that relevant variant callers readily re-identified the majority of variants (120/145, 83%), including ∼90% of structural variants, SNVs/insertions or deletions (indels) in homologous sequences, and expansions of short tandem repeats. Another 10% (n = 14) was visually apparent in the data but not automatically detected. Our analyses also identified systematic challenges for the remaining 7% (n = 11) of variants, such as the detection of AG-rich repeat expansions. Titration analysis showed that 90% of all automatically called variants could also be identified using 15-fold coverage. Long-read genomes thus identified 93% of challenging pathogenic variants from our dataset. Even with reduced coverage, the vast majority of variants remained detectable, possibly enhancing cost-effective diagnostic implementation. Most importantly, we show the potential to use a single technology to accurately identify all types of clinically relevant variants.</p>","PeriodicalId":7659,"journal":{"name":"American journal of human genetics","volume":" ","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of human genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.ajhg.2024.12.013","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Clinical short-read exome and genome sequencing approaches have positively impacted diagnostic testing for rare diseases. Yet, technical limitations associated with short reads challenge their use for the detection of disease-associated variation in complex regions of the genome. Long-read sequencing (LRS) technologies may overcome these challenges, potentially qualifying as a first-tier test for all rare diseases. To test this hypothesis, we performed LRS (30× high-fidelity [HiFi] genomes) for 100 samples with 145 known clinically relevant germline variants that are challenging to detect using short-read sequencing and necessitate a broad range of complementary test modalities in diagnostic laboratories. We show that relevant variant callers readily re-identified the majority of variants (120/145, 83%), including ∼90% of structural variants, SNVs/insertions or deletions (indels) in homologous sequences, and expansions of short tandem repeats. Another 10% (n = 14) was visually apparent in the data but not automatically detected. Our analyses also identified systematic challenges for the remaining 7% (n = 11) of variants, such as the detection of AG-rich repeat expansions. Titration analysis showed that 90% of all automatically called variants could also be identified using 15-fold coverage. Long-read genomes thus identified 93% of challenging pathogenic variants from our dataset. Even with reduced coverage, the vast majority of variants remained detectable, possibly enhancing cost-effective diagnostic implementation. Most importantly, we show the potential to use a single technology to accurately identify all types of clinically relevant variants.
期刊介绍:
The American Journal of Human Genetics (AJHG) is a monthly journal published by Cell Press, chosen by The American Society of Human Genetics (ASHG) as its premier publication starting from January 2008. AJHG represents Cell Press's first society-owned journal, and both ASHG and Cell Press anticipate significant synergies between AJHG content and that of other Cell Press titles.