{"title":"Foaming purees as a strategy to modify oral processing time.","authors":"R Baixauli, A Tárrega, I Hernando, L Laguna","doi":"10.1016/j.crfs.2024.100962","DOIUrl":null,"url":null,"abstract":"<p><p>Food structure modification by increasing viscosity or adding heterogeneity to the food product has shown to effectively change food oral processing. In this study, it was hypothesized that the addition of gas to purees could affect oral processing. This was achieved by creating different structures in purees using a gas syphon, vacuum and syphon + vacuum. The physical properties of the puree (density, flow and mechanical properties) as well as oral processing characteristics, sensory perception and hunger profiles were investigated. Physical measurements showed that the incorporation of gas affected the puree structure as evidenced by a decrease in viscosity, hardness and consistency of the purees. At the oral level, these foamed purees took longer to swallow, which was also reflected in a lower eating rate and slightly lower amount consumed. These changes did not affect hunger or satiety. Therefore, this technique could be beneficial for people who need to eat smaller amounts of food, or for people with swallowing problems, for whom more time in the mouth is recommended without an increase in sensory satiety.</p>","PeriodicalId":10939,"journal":{"name":"Current Research in Food Science","volume":"10 ","pages":"100962"},"PeriodicalIF":6.2000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11730571/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Research in Food Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.crfs.2024.100962","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Food structure modification by increasing viscosity or adding heterogeneity to the food product has shown to effectively change food oral processing. In this study, it was hypothesized that the addition of gas to purees could affect oral processing. This was achieved by creating different structures in purees using a gas syphon, vacuum and syphon + vacuum. The physical properties of the puree (density, flow and mechanical properties) as well as oral processing characteristics, sensory perception and hunger profiles were investigated. Physical measurements showed that the incorporation of gas affected the puree structure as evidenced by a decrease in viscosity, hardness and consistency of the purees. At the oral level, these foamed purees took longer to swallow, which was also reflected in a lower eating rate and slightly lower amount consumed. These changes did not affect hunger or satiety. Therefore, this technique could be beneficial for people who need to eat smaller amounts of food, or for people with swallowing problems, for whom more time in the mouth is recommended without an increase in sensory satiety.
期刊介绍:
Current Research in Food Science is an international peer-reviewed journal dedicated to advancing the breadth of knowledge in the field of food science. It serves as a platform for publishing original research articles and short communications that encompass a wide array of topics, including food chemistry, physics, microbiology, nutrition, nutraceuticals, process and package engineering, materials science, food sustainability, and food security. By covering these diverse areas, the journal aims to provide a comprehensive source of the latest scientific findings and technological advancements that are shaping the future of the food industry. The journal's scope is designed to address the multidisciplinary nature of food science, reflecting its commitment to promoting innovation and ensuring the safety and quality of the food supply.