{"title":"Target Discovery Driven by Chemical Biology and Computational Biology.","authors":"Bohai Lyu, Wenfeng Gou, Feifei Xu, Leyuan Chen, Zhiyun Wang, Zhonghao Ren, Gaiting Liu, Yiliang Li, Wenbin Hou","doi":"10.1002/tcr.202400182","DOIUrl":null,"url":null,"abstract":"<p><p>Target identification is crucial for drug screening and development because it can reveal the mechanism of drug action and ensure the reliability and accuracy of the results. Chemical biology, an interdisciplinary field combining chemistry and biology, can assist in this process by studying the interactions between active molecular compounds and proteins and their physiological effects. It can also help predict potential drug targets or candidates, develop new biomarker assays and diagnostic reagents, and evaluate the selectivity and range of active compounds to reduce the risk of off-target effects. Chemical biology can achieve these goals using techniques such as changing protein thermal stability, enzyme sensitivity, and molecular structure and applying probes, isotope labeling and mass spectrometry. Concurrently, computational biology employs a diverse array of computational models to predict drug targets. This approach also offers innovative avenues for repurposing existing drugs. In this paper, we review the reported chemical biology and computational biology techniques for identifying different types of targets that can provide valuable insights for drug target discovery.</p>","PeriodicalId":10046,"journal":{"name":"Chemical record","volume":" ","pages":"e202400182"},"PeriodicalIF":7.0000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical record","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/tcr.202400182","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Target identification is crucial for drug screening and development because it can reveal the mechanism of drug action and ensure the reliability and accuracy of the results. Chemical biology, an interdisciplinary field combining chemistry and biology, can assist in this process by studying the interactions between active molecular compounds and proteins and their physiological effects. It can also help predict potential drug targets or candidates, develop new biomarker assays and diagnostic reagents, and evaluate the selectivity and range of active compounds to reduce the risk of off-target effects. Chemical biology can achieve these goals using techniques such as changing protein thermal stability, enzyme sensitivity, and molecular structure and applying probes, isotope labeling and mass spectrometry. Concurrently, computational biology employs a diverse array of computational models to predict drug targets. This approach also offers innovative avenues for repurposing existing drugs. In this paper, we review the reported chemical biology and computational biology techniques for identifying different types of targets that can provide valuable insights for drug target discovery.
期刊介绍:
The Chemical Record (TCR) is a "highlights" journal publishing timely and critical overviews of new developments at the cutting edge of chemistry of interest to a wide audience of chemists (2013 journal impact factor: 5.577). The scope of published reviews includes all areas related to physical chemistry, analytical chemistry, inorganic chemistry, organic chemistry, polymer chemistry, materials chemistry, bioorganic chemistry, biochemistry, biotechnology and medicinal chemistry as well as interdisciplinary fields.
TCR provides carefully selected highlight papers by leading researchers that introduce the author''s own experimental and theoretical results in a framework designed to establish perspectives with earlier and contemporary work and provide a critical review of the present state of the subject. The articles are intended to present concise evaluations of current trends in chemistry research to help chemists gain useful insights into fields outside their specialization and provide experts with summaries of recent key developments.