In vivo brain delivery of BBB-enabled iduronate 2-sulfatase in rats.

IF 5.9 1区 医学 Q1 NEUROSCIENCES Fluids and Barriers of the CNS Pub Date : 2025-01-14 DOI:10.1186/s12987-024-00617-6
Will J Costain, Arsalan S Haqqani, Greg Hussack, Henk van Faassen, Etienne Lessard, Binbing Ling, Eric Brunette, Dao Ly, Hung Fang, Jennyfer Bultinck, Steven Geysens, Gwenda Pynaert, Kathleen Piens, Stefan Ryckaert, Franck Fudalej, Wouter Vervecken, Danica Stanimirovic
{"title":"In vivo brain delivery of BBB-enabled iduronate 2-sulfatase in rats.","authors":"Will J Costain, Arsalan S Haqqani, Greg Hussack, Henk van Faassen, Etienne Lessard, Binbing Ling, Eric Brunette, Dao Ly, Hung Fang, Jennyfer Bultinck, Steven Geysens, Gwenda Pynaert, Kathleen Piens, Stefan Ryckaert, Franck Fudalej, Wouter Vervecken, Danica Stanimirovic","doi":"10.1186/s12987-024-00617-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Iduronate-2-sulfatase (IDS) deficiency (MPS II; Hunter syndrome) is a disorder that exhibits peripheral and CNS pathology. The blood brain barrier (BBB) prevents systemic enzyme replacement therapy (ERT) from alleviating CNS pathology. We aimed to enable brain delivery of systemic ERT by using molecular BBB-Trojans targeting endothelial transcytosis receptors.</p><p><strong>Methods: </strong>Single-domain antibody (sdAb)-enzyme fusion protein constructs were prepared in Yarrowia lipolytica. sdAb affinity and BBB permeability were characterized using SPR and an in vitro rodent BBB assay, respectively. In vivo pharmacokinetic (PK) analysis was performed in rats. Quantification of fusion protein amounts were performed using LC-MS.</p><p><strong>Results: </strong>Fusion proteins consisting of IDS and BBB-transmigrating sdAbs, albumin binding sdAbs or human serum albumin (HSA) were evaluated for their in vitro BBB permeability. IGF1R3H5-IDS was selected for in vivo PK analysis in rats. IDS and IGF1R3H5-IDS exhibited very short (< 10 min) serum half-life (t<sub>1/2α</sub>), while constructs containing either HSA or anti-serum albumin sdAbs (R28 or M79) showed 8-11 fold increases in the area under the curve (AUC) in serum. CSF analysis indicated that IGF1R3H5 increased brain exposure by 9 fold (AUC) and constructs containing HSA or R28 exhibited 42-52 fold increases. Quantitation of brain levels confirmed the increased and sustained delivery of IDS to the brain of HSA- and R28-containing constructs. Lastly, analysis of brain fractions demonstrated that the increases in brain tissue were due to parenchymal delivery without fusion protein accumulation in brain vessels.</p><p><strong>Conclusions: </strong>These results demonstrate the utility of IGF1R-targeting sdAbs to effect brain delivery of lysosomal enzymes, as well as the utility of serum albumin-targeting sdAbs in t<sub>1/2</sub> extension, to increase brain delivery of rapidly cleared enzymes.</p>","PeriodicalId":12321,"journal":{"name":"Fluids and Barriers of the CNS","volume":"22 1","pages":"7"},"PeriodicalIF":5.9000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11734454/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluids and Barriers of the CNS","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12987-024-00617-6","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Iduronate-2-sulfatase (IDS) deficiency (MPS II; Hunter syndrome) is a disorder that exhibits peripheral and CNS pathology. The blood brain barrier (BBB) prevents systemic enzyme replacement therapy (ERT) from alleviating CNS pathology. We aimed to enable brain delivery of systemic ERT by using molecular BBB-Trojans targeting endothelial transcytosis receptors.

Methods: Single-domain antibody (sdAb)-enzyme fusion protein constructs were prepared in Yarrowia lipolytica. sdAb affinity and BBB permeability were characterized using SPR and an in vitro rodent BBB assay, respectively. In vivo pharmacokinetic (PK) analysis was performed in rats. Quantification of fusion protein amounts were performed using LC-MS.

Results: Fusion proteins consisting of IDS and BBB-transmigrating sdAbs, albumin binding sdAbs or human serum albumin (HSA) were evaluated for their in vitro BBB permeability. IGF1R3H5-IDS was selected for in vivo PK analysis in rats. IDS and IGF1R3H5-IDS exhibited very short (< 10 min) serum half-life (t1/2α), while constructs containing either HSA or anti-serum albumin sdAbs (R28 or M79) showed 8-11 fold increases in the area under the curve (AUC) in serum. CSF analysis indicated that IGF1R3H5 increased brain exposure by 9 fold (AUC) and constructs containing HSA or R28 exhibited 42-52 fold increases. Quantitation of brain levels confirmed the increased and sustained delivery of IDS to the brain of HSA- and R28-containing constructs. Lastly, analysis of brain fractions demonstrated that the increases in brain tissue were due to parenchymal delivery without fusion protein accumulation in brain vessels.

Conclusions: These results demonstrate the utility of IGF1R-targeting sdAbs to effect brain delivery of lysosomal enzymes, as well as the utility of serum albumin-targeting sdAbs in t1/2 extension, to increase brain delivery of rapidly cleared enzymes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
脑血脑屏障激活的伊杜酸2-硫酸酯酶在大鼠脑内的传递。
背景:Iduronate-2-sulfatase (IDS) deficiency;亨特综合征(Hunter syndrome)是一种表现外周和中枢神经系统病理的疾病。血脑屏障(BBB)阻止全身酶替代疗法(ERT)减轻中枢神经系统病理。我们的目标是通过使用靶向内皮细胞吞噬受体的分子bbb木马来实现全身ERT的脑递送。方法:利用多脂耶氏菌制备单域抗体(sdAb)-酶融合蛋白。SPR和体外鼠血脑屏障实验分别表征了sdAb的亲和力和血脑屏障通透性。进行大鼠体内药代动力学(PK)分析。采用LC-MS定量融合蛋白的含量。结果:研究了IDS与血脑屏障迁移单抗、白蛋白结合单抗或人血清白蛋白(HSA)组成的融合蛋白对血脑屏障的体外通透性。选择IGF1R3H5-IDS进行大鼠体内PK分析。IDS和IGF1R3H5-IDS表现出非常短的(1/2α),而含有HSA或抗血清白蛋白单克隆抗体(R28或M79)的构建体的血清曲线下面积(AUC)增加了8-11倍。CSF分析表明,IGF1R3H5使脑暴露增加9倍(AUC),含有HSA或R28的构建物增加42-52倍。脑水平的定量证实了含HSA和r28构建体的IDS向脑的持续递送增加。最后,对脑组织的分析表明,脑组织的增加是由于脑实质传递,而不是在脑血管中积累融合蛋白。结论:这些结果表明靶向igf1r的单克隆抗体可以影响溶酶体酶的脑递送,以及在t1/2延长中靶向血清白蛋白的单克隆抗体可以增加快速清除酶的脑递送。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Fluids and Barriers of the CNS
Fluids and Barriers of the CNS Neuroscience-Developmental Neuroscience
CiteScore
10.70
自引率
8.20%
发文量
94
审稿时长
14 weeks
期刊介绍: "Fluids and Barriers of the CNS" is a scholarly open access journal that specializes in the intricate world of the central nervous system's fluids and barriers, which are pivotal for the health and well-being of the human body. This journal is a peer-reviewed platform that welcomes research manuscripts exploring the full spectrum of CNS fluids and barriers, with a particular focus on their roles in both health and disease. At the heart of this journal's interest is the cerebrospinal fluid (CSF), a vital fluid that circulates within the brain and spinal cord, playing a multifaceted role in the normal functioning of the brain and in various neurological conditions. The journal delves into the composition, circulation, and absorption of CSF, as well as its relationship with the parenchymal interstitial fluid and the neurovascular unit at the blood-brain barrier (BBB).
期刊最新文献
Age-related cerebral ventriculomegaly occurs in patients with primary ciliary dyskinesia. Endothelial and neuronal engagement by AAV-BR1 gene therapy alleviates neurological symptoms and lipid deposition in a mouse model of Niemann-Pick type C2. Increasing brain half-life of antibodies by additional binding to myelin oligodendrocyte glycoprotein, a CNS specific protein. A novel method for detecting intracranial pressure changes by monitoring cerebral perfusion via electrical impedance tomography. Exploring the ability of plasma pTau217, pTau181 and beta-amyloid in mirroring cerebrospinal fluid biomarker profile of Mild Cognitive Impairment by the fully automated Lumipulse® platform.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1