Alexandra Hochstetler, Christine Hehnly, William Dawes, Daniel Harris, Cameron Sadegh, Francesco T Mangano, Samantha N Lanjewar, Monica J Chau
{"title":"Research priorities for non-invasive therapies to improve hydrocephalus outcomes.","authors":"Alexandra Hochstetler, Christine Hehnly, William Dawes, Daniel Harris, Cameron Sadegh, Francesco T Mangano, Samantha N Lanjewar, Monica J Chau","doi":"10.1186/s12987-025-00632-1","DOIUrl":null,"url":null,"abstract":"<p><p>The Hydrocephalus Association organized two workshops with the support of the Rudi Schulte Research Institute and Cincinnati Children's Hospital Medical Center entitled \"Developing Non-Invasive Hydrocephalus Therapies: Molecular and Cellular Targets\", held September 27-29, 2023, in Dallas, TX, and \"Developing Non-Invasive Hydrocephalus Therapies: Advancing Towards Clinical Trials\", held April 12-13, 2024, in Cincinnati, OH. The goal of these workshops was to explore the frontiers of ongoing research for non-invasive therapies for the treatment of hydrocephalus across all etiologies and to improve patient outcomes at all stages of diagnosis and management. During the consensus-building discussions throughout the research workshops, basic, translational, and clinical scientists aimed to identify the next steps to develop novel treatments for hydrocephalus. This detailed report discusses the research priorities that emerged from these workshops to inspire researchers and guide studies towards better treatment for people living with hydrocephalus.</p>","PeriodicalId":12321,"journal":{"name":"Fluids and Barriers of the CNS","volume":"22 1","pages":"24"},"PeriodicalIF":5.9000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11877769/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluids and Barriers of the CNS","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12987-025-00632-1","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The Hydrocephalus Association organized two workshops with the support of the Rudi Schulte Research Institute and Cincinnati Children's Hospital Medical Center entitled "Developing Non-Invasive Hydrocephalus Therapies: Molecular and Cellular Targets", held September 27-29, 2023, in Dallas, TX, and "Developing Non-Invasive Hydrocephalus Therapies: Advancing Towards Clinical Trials", held April 12-13, 2024, in Cincinnati, OH. The goal of these workshops was to explore the frontiers of ongoing research for non-invasive therapies for the treatment of hydrocephalus across all etiologies and to improve patient outcomes at all stages of diagnosis and management. During the consensus-building discussions throughout the research workshops, basic, translational, and clinical scientists aimed to identify the next steps to develop novel treatments for hydrocephalus. This detailed report discusses the research priorities that emerged from these workshops to inspire researchers and guide studies towards better treatment for people living with hydrocephalus.
期刊介绍:
"Fluids and Barriers of the CNS" is a scholarly open access journal that specializes in the intricate world of the central nervous system's fluids and barriers, which are pivotal for the health and well-being of the human body. This journal is a peer-reviewed platform that welcomes research manuscripts exploring the full spectrum of CNS fluids and barriers, with a particular focus on their roles in both health and disease.
At the heart of this journal's interest is the cerebrospinal fluid (CSF), a vital fluid that circulates within the brain and spinal cord, playing a multifaceted role in the normal functioning of the brain and in various neurological conditions. The journal delves into the composition, circulation, and absorption of CSF, as well as its relationship with the parenchymal interstitial fluid and the neurovascular unit at the blood-brain barrier (BBB).