Hypoxemia exerts detrimental effects on the choroid plexuses and cerebrospinal fluid system in rats.

IF 5.9 1区 医学 Q1 NEUROSCIENCES Fluids and Barriers of the CNS Pub Date : 2025-03-12 DOI:10.1186/s12987-024-00613-w
Rawan Barakat, Hameed Al-Sarraf, Zoran Redzic
{"title":"Hypoxemia exerts detrimental effects on the choroid plexuses and cerebrospinal fluid system in rats.","authors":"Rawan Barakat, Hameed Al-Sarraf, Zoran Redzic","doi":"10.1186/s12987-024-00613-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Hypoxemia can cause secondary acute brain injury, but the mechanisms behind it are not entirely clear and could involve disturbances in the brain extracellular fluids. We aimed to explore the effects of hypoxemia on the choroid plexus (CPs) and cerebrospinal fluid (CSF) system in rats.</p><p><strong>Methods: </strong>Male Sprague Dawley rats were kept in O<sub>2</sub> control in vivo cabinet with either 21% (normoxia) or 8% O<sub>2</sub> (hypoxemia) for up to 48 h. In some cases, signaling of selected cytokines was inhibited prior to hypoxemia. CSF and blood samples were collected by Cisterna Magna puncture and through venous catheters, respectively. The percentages of dead cells in the CPs and ependymal layers (EL) after hypoxemia or normoxia was estimated using TUNEL staining. CP's ultrastructure was analyzed by transmission electron microscopy. Protein concentration in the CSF and plasma was measured and the CSF albumin-to-total protein ratios were estimated. Concentrations of hypoxia-related cytokines in the CSF and plasma samples were estimated using the multiplex immunoassay. Data was analyzed by one-way ANOVA followed by either Bonferroni or Tukey's multiple comparison tests, or Student's t-test. Results are presented as mean ± SD; p < 0.05 was considered statistically significant.</p><p><strong>Results: </strong>Duration of hypoxemia exerted significant effects on the cell viability in the CPs (p < 0.01) and EL (p < 0.01) and caused apoptosis-related changes in the CP. Hypoxemia had significant effects on the protein concentration in the CSF (p < 0.05), but not in plasma (p > 0.05), with a significant increase in the CSF albumin-to-total protein ratio after 6 h hypoxemia (p < 0.05). Thirty-two cytokines were detected in the CSF. Hypoxemia caused a statistically significant reduction in the concentrations of 12 cytokines, while concentrations of erythropoietin (EPO) and vascular endothelial growth factor (VEGF) increased significantly. Exposure to hypoxemia after inhibitions of EPO, VEGF, or tumor necrosis factor alpha (TNFα) signaling resulted in more dead cells (p < 0.01), less dead cells (p < 0.01) and more dead cells (p < 0.01) in the CPs, respectively, when compared to the number of dead cells when these cytokines were not inhibited. The density of macrophages in the CPs decreased significantly during hypoxemia; that effect was cancelled out by TNFα inhibition.</p><p><strong>Conclusion: </strong>Hypoxemia had detrimental effects on the CPs and CSF system, which was modulated by hypoxia- and inflammation-related cytokines.</p>","PeriodicalId":12321,"journal":{"name":"Fluids and Barriers of the CNS","volume":"22 1","pages":"27"},"PeriodicalIF":5.9000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluids and Barriers of the CNS","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12987-024-00613-w","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Hypoxemia can cause secondary acute brain injury, but the mechanisms behind it are not entirely clear and could involve disturbances in the brain extracellular fluids. We aimed to explore the effects of hypoxemia on the choroid plexus (CPs) and cerebrospinal fluid (CSF) system in rats.

Methods: Male Sprague Dawley rats were kept in O2 control in vivo cabinet with either 21% (normoxia) or 8% O2 (hypoxemia) for up to 48 h. In some cases, signaling of selected cytokines was inhibited prior to hypoxemia. CSF and blood samples were collected by Cisterna Magna puncture and through venous catheters, respectively. The percentages of dead cells in the CPs and ependymal layers (EL) after hypoxemia or normoxia was estimated using TUNEL staining. CP's ultrastructure was analyzed by transmission electron microscopy. Protein concentration in the CSF and plasma was measured and the CSF albumin-to-total protein ratios were estimated. Concentrations of hypoxia-related cytokines in the CSF and plasma samples were estimated using the multiplex immunoassay. Data was analyzed by one-way ANOVA followed by either Bonferroni or Tukey's multiple comparison tests, or Student's t-test. Results are presented as mean ± SD; p < 0.05 was considered statistically significant.

Results: Duration of hypoxemia exerted significant effects on the cell viability in the CPs (p < 0.01) and EL (p < 0.01) and caused apoptosis-related changes in the CP. Hypoxemia had significant effects on the protein concentration in the CSF (p < 0.05), but not in plasma (p > 0.05), with a significant increase in the CSF albumin-to-total protein ratio after 6 h hypoxemia (p < 0.05). Thirty-two cytokines were detected in the CSF. Hypoxemia caused a statistically significant reduction in the concentrations of 12 cytokines, while concentrations of erythropoietin (EPO) and vascular endothelial growth factor (VEGF) increased significantly. Exposure to hypoxemia after inhibitions of EPO, VEGF, or tumor necrosis factor alpha (TNFα) signaling resulted in more dead cells (p < 0.01), less dead cells (p < 0.01) and more dead cells (p < 0.01) in the CPs, respectively, when compared to the number of dead cells when these cytokines were not inhibited. The density of macrophages in the CPs decreased significantly during hypoxemia; that effect was cancelled out by TNFα inhibition.

Conclusion: Hypoxemia had detrimental effects on the CPs and CSF system, which was modulated by hypoxia- and inflammation-related cytokines.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Fluids and Barriers of the CNS
Fluids and Barriers of the CNS Neuroscience-Developmental Neuroscience
CiteScore
10.70
自引率
8.20%
发文量
94
审稿时长
14 weeks
期刊介绍: "Fluids and Barriers of the CNS" is a scholarly open access journal that specializes in the intricate world of the central nervous system's fluids and barriers, which are pivotal for the health and well-being of the human body. This journal is a peer-reviewed platform that welcomes research manuscripts exploring the full spectrum of CNS fluids and barriers, with a particular focus on their roles in both health and disease. At the heart of this journal's interest is the cerebrospinal fluid (CSF), a vital fluid that circulates within the brain and spinal cord, playing a multifaceted role in the normal functioning of the brain and in various neurological conditions. The journal delves into the composition, circulation, and absorption of CSF, as well as its relationship with the parenchymal interstitial fluid and the neurovascular unit at the blood-brain barrier (BBB).
期刊最新文献
Hypoxemia exerts detrimental effects on the choroid plexuses and cerebrospinal fluid system in rats. Ventriculosagittal sinus shunt for treating hydrocephalus with elevated cerebrospinal fluid protein. A review of cerebrospinal fluid circulation with respect to Chiari-like malformation and syringomyelia in brachycephalic dogs. Applying machine learning to high-dimensional proteomics datasets for the identification of Alzheimer's disease biomarkers. Research priorities for non-invasive therapies to improve hydrocephalus outcomes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1