Neuronal mechanisms of nociceptive-evoked gamma-band oscillations in rodents.

IF 14.7 1区 医学 Q1 NEUROSCIENCES Neuron Pub Date : 2025-03-05 Epub Date: 2025-01-13 DOI:10.1016/j.neuron.2024.12.011
Lupeng Yue, Chongyu Bao, Libo Zhang, Fengrui Zhang, Wenqian Zhou, Gian Domenico Iannetti, Li Hu
{"title":"Neuronal mechanisms of nociceptive-evoked gamma-band oscillations in rodents.","authors":"Lupeng Yue, Chongyu Bao, Libo Zhang, Fengrui Zhang, Wenqian Zhou, Gian Domenico Iannetti, Li Hu","doi":"10.1016/j.neuron.2024.12.011","DOIUrl":null,"url":null,"abstract":"<p><p>Gamma-band oscillations (GBOs) in the primary somatosensory cortex (S1) play key roles in nociceptive processing. Yet, one crucial question remains unaddressed: what neuronal mechanisms underlie nociceptive-evoked GBOs? Here, we addressed this question using a range of somatosensory stimuli (nociceptive and non-nociceptive), neural recording techniques (electroencephalography in humans and silicon probes and calcium imaging in rodents), and optogenetics (alone or simultaneously with electrophysiology in mice). We found that (1) GBOs encoded pain intensity independent of stimulus intensity in humans, (2) GBOs in S1 encoded pain intensity and were triggered by spiking of S1 interneurons, (3) parvalbumin (PV)-positive interneurons preferentially tracked pain intensity, and critically, (4) PV S1 interneurons causally modulated GBOs and pain-related behaviors for both thermal and mechanical pain. These findings provide causal evidence that nociceptive-evoked GBOs preferentially encoding pain intensity are generated by PV interneurons in S1, thereby laying a solid foundation for developing GBO-based targeted pain therapies.</p>","PeriodicalId":19313,"journal":{"name":"Neuron","volume":" ","pages":"769-784.e6"},"PeriodicalIF":14.7000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuron","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.neuron.2024.12.011","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/13 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Gamma-band oscillations (GBOs) in the primary somatosensory cortex (S1) play key roles in nociceptive processing. Yet, one crucial question remains unaddressed: what neuronal mechanisms underlie nociceptive-evoked GBOs? Here, we addressed this question using a range of somatosensory stimuli (nociceptive and non-nociceptive), neural recording techniques (electroencephalography in humans and silicon probes and calcium imaging in rodents), and optogenetics (alone or simultaneously with electrophysiology in mice). We found that (1) GBOs encoded pain intensity independent of stimulus intensity in humans, (2) GBOs in S1 encoded pain intensity and were triggered by spiking of S1 interneurons, (3) parvalbumin (PV)-positive interneurons preferentially tracked pain intensity, and critically, (4) PV S1 interneurons causally modulated GBOs and pain-related behaviors for both thermal and mechanical pain. These findings provide causal evidence that nociceptive-evoked GBOs preferentially encoding pain intensity are generated by PV interneurons in S1, thereby laying a solid foundation for developing GBO-based targeted pain therapies.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
啮齿动物痛觉诱发伽马波段振荡的神经元机制
初级体感觉皮层(S1)的伽马波段振荡(GBOs)在伤害性加工中起着关键作用。然而,一个关键问题仍未解决:伤害性诱发的gbo背后的神经元机制是什么?在这里,我们使用一系列躯体感觉刺激(伤害性和非伤害性)、神经记录技术(人类脑电图和啮齿动物的硅探针和钙成像)和光遗传学(单独或同时与小鼠电生理学)来解决这个问题。我们发现:(1)GBOs编码疼痛强度独立于刺激强度;(2)S1区GBOs编码疼痛强度,并由S1中间神经元的峰值触发;(3)小白蛋白(PV)阳性的中间神经元优先跟踪疼痛强度;(4)PV S1中间神经元对GBOs和疼痛相关行为进行因果调节,包括热痛和机械性疼痛。这些发现提供了伤害性诱发的gbo优先编码疼痛强度是由S1的PV中间神经元产生的因果证据,从而为开发基于gbo的靶向疼痛治疗奠定了坚实的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Neuron
Neuron 医学-神经科学
CiteScore
24.50
自引率
3.10%
发文量
382
审稿时长
1 months
期刊介绍: Established as a highly influential journal in neuroscience, Neuron is widely relied upon in the field. The editors adopt interdisciplinary strategies, integrating biophysical, cellular, developmental, and molecular approaches alongside a systems approach to sensory, motor, and higher-order cognitive functions. Serving as a premier intellectual forum, Neuron holds a prominent position in the entire neuroscience community.
期刊最新文献
Clonally expanded, targetable, natural killer-like NKG7 T cells seed the aged spinal cord to disrupt myeloid-dependent wound healing. Neuronal mechanisms of nociceptive-evoked gamma-band oscillations in rodents. ApoE3 R136S binds to Tau and blocks its propagation, suppressing neurodegeneration in mice with Alzheimer's disease. CRISPRi-based screens in iAssembloids to elucidate neuron-glia interactions. Dopamine D1 receptor activation in the striatum is sufficient to drive reinforcement of anteceding cortical patterns.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1