María Claudia Atencia-Pineda, Javier García-Leal, Diana Diaz-Ortiz, Paula Pareja-Loaiza, Lisandro Pacheco-Lugo, Richard Hoyos-López, Alfonso Calderón-Rangel, Pedro Fragozo-Castilla, Selene M Gutiérrez-Rodríguez, Adriana E Flores, Ronald Maestre-Serrano
{"title":"Susceptibility to organophosphate insecticides in Aedes aegypti (Diptera: Culicidae) from northern Colombia and associated resistance mechanisms.","authors":"María Claudia Atencia-Pineda, Javier García-Leal, Diana Diaz-Ortiz, Paula Pareja-Loaiza, Lisandro Pacheco-Lugo, Richard Hoyos-López, Alfonso Calderón-Rangel, Pedro Fragozo-Castilla, Selene M Gutiérrez-Rodríguez, Adriana E Flores, Ronald Maestre-Serrano","doi":"10.1186/s13071-024-06624-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Aedes aegypti is the primary vector of dengue, chikungunya, and Zika viruses in Colombia. Various insecticides, including pyrethroid, organophosphate, and carbamate insecticides; growth regulators; and biological insecticides, such as Bacillus thuringiensis var. israelensis, have been used to control Ae. aegypti populations. However, organophosphates such as malathion, pirimiphos-methyl, and temephos have been used over the last decade owing to the high resistance to pyrethroids.</p><p><strong>Methods: </strong>This study assessed the susceptibility to organophosphates in 14 Ae. aegypti populations from the Córdoba department in northern Colombia. Moreover, possible resistance mechanisms were investigated by determining the activity levels of α-esterases, β-esterases, mixed function oxidases (MFOs), glutathione S-transferases (GSTs), and insensitive acetylcholinesterase (iAChE). Additionally, the Ace-1 gene was sequenced to identify mutations at the target site of action.</p><p><strong>Results: </strong>The populations were susceptible to temephos and malathion but resistant to fenitrothion, and in three of them, to pirimiphos-methyl. Alterations in the enzyme activity levels of α-esterases and β-esterases, GST, and iAChE were observed among the populations, with high enzyme activity levels of α and β esterases associated with resistance to fenitrothion. No mutations were identified in the Ace-1 gene.</p><p><strong>Conclusions: </strong>These findings are highly relevant for vector control programs in the region, as they allow for adjustments in resistance management strategies and improve the effectiveness of interventions against these arboviruses.</p>","PeriodicalId":19793,"journal":{"name":"Parasites & Vectors","volume":"18 1","pages":"7"},"PeriodicalIF":3.0000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Parasites & Vectors","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13071-024-06624-8","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PARASITOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Aedes aegypti is the primary vector of dengue, chikungunya, and Zika viruses in Colombia. Various insecticides, including pyrethroid, organophosphate, and carbamate insecticides; growth regulators; and biological insecticides, such as Bacillus thuringiensis var. israelensis, have been used to control Ae. aegypti populations. However, organophosphates such as malathion, pirimiphos-methyl, and temephos have been used over the last decade owing to the high resistance to pyrethroids.
Methods: This study assessed the susceptibility to organophosphates in 14 Ae. aegypti populations from the Córdoba department in northern Colombia. Moreover, possible resistance mechanisms were investigated by determining the activity levels of α-esterases, β-esterases, mixed function oxidases (MFOs), glutathione S-transferases (GSTs), and insensitive acetylcholinesterase (iAChE). Additionally, the Ace-1 gene was sequenced to identify mutations at the target site of action.
Results: The populations were susceptible to temephos and malathion but resistant to fenitrothion, and in three of them, to pirimiphos-methyl. Alterations in the enzyme activity levels of α-esterases and β-esterases, GST, and iAChE were observed among the populations, with high enzyme activity levels of α and β esterases associated with resistance to fenitrothion. No mutations were identified in the Ace-1 gene.
Conclusions: These findings are highly relevant for vector control programs in the region, as they allow for adjustments in resistance management strategies and improve the effectiveness of interventions against these arboviruses.
期刊介绍:
Parasites & Vectors is an open access, peer-reviewed online journal dealing with the biology of parasites, parasitic diseases, intermediate hosts, vectors and vector-borne pathogens. Manuscripts published in this journal will be available to all worldwide, with no barriers to access, immediately following acceptance. However, authors retain the copyright of their material and may use it, or distribute it, as they wish.
Manuscripts on all aspects of the basic and applied biology of parasites, intermediate hosts, vectors and vector-borne pathogens will be considered. In addition to the traditional and well-established areas of science in these fields, we also aim to provide a vehicle for publication of the rapidly developing resources and technology in parasite, intermediate host and vector genomics and their impacts on biological research. We are able to publish large datasets and extensive results, frequently associated with genomic and post-genomic technologies, which are not readily accommodated in traditional journals. Manuscripts addressing broader issues, for example economics, social sciences and global climate change in relation to parasites, vectors and disease control, are also welcomed.