Data fusion by T3-PCA: A global model for the simultaneous analysis of coupled three-way and two-way real-valued data.

IF 1.5 3区 心理学 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS British Journal of Mathematical & Statistical Psychology Pub Date : 2025-01-15 DOI:10.1111/bmsp.12372
Elisa Frutos-Bernal, Eva Ceulemans, Purificación Galindo-Villardón, Tom F Wilderjans
{"title":"Data fusion by T3-PCA: A global model for the simultaneous analysis of coupled three-way and two-way real-valued data.","authors":"Elisa Frutos-Bernal, Eva Ceulemans, Purificación Galindo-Villardón, Tom F Wilderjans","doi":"10.1111/bmsp.12372","DOIUrl":null,"url":null,"abstract":"<p><p>In various areas of science, researchers try to gain insight into important processes by jointly analysing different datasets containing information regarding common aspects of these processes. For example, to explain individual differences in personality, researchers collect, for the same set of persons, data regarding behavioural signatures (i.e., the reaction profile of a person across different situations), on the one hand, and traits or dispositions, on the other hand. To uncover the processes underlying such coupled data, to all N-way <math> <semantics><mrow><mi>N</mi></mrow> <annotation>$$ N $$</annotation></semantics> </math> -mode data blocks simultaneously a global model is fitted, in which each data block is represented by an <math> <semantics><mrow><mi>N</mi></mrow> <annotation>$$ N $$</annotation></semantics> </math> -way <math> <semantics><mrow><mi>N</mi></mrow> <annotation>$$ N $$</annotation></semantics> </math> -mode decomposition model (e.g., principal component analysis [PCA], Parafac, Tucker3) and the parameters underlying the common mode are required to be the same for all data blocks this mode belongs to. To estimate the parameters underlying the common mode, a simultaneous strategy is used that pools the information present in all data blocks (i.e., data fusion). In this paper, we propose the T3-PCA model, which represents three- and two-way data with Tucker3 and PCA respectively. This model is less restrictive than the already proposed LMPCA model in which the three-way data block is decomposed according to a Parafac model. To estimate the T3-PCA model parameters, an alternating least-squares algorithm is proposed. The superior performance of the simultaneous T3-PCA strategy over a sequential strategy (i.e., estimating common parameters using information from the three-way data block only) is demonstrated in an extensive simulation study and an application to empirical coupled anxiety data.</p>","PeriodicalId":55322,"journal":{"name":"British Journal of Mathematical & Statistical Psychology","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"British Journal of Mathematical & Statistical Psychology","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1111/bmsp.12372","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

In various areas of science, researchers try to gain insight into important processes by jointly analysing different datasets containing information regarding common aspects of these processes. For example, to explain individual differences in personality, researchers collect, for the same set of persons, data regarding behavioural signatures (i.e., the reaction profile of a person across different situations), on the one hand, and traits or dispositions, on the other hand. To uncover the processes underlying such coupled data, to all N-way N $$ N $$ -mode data blocks simultaneously a global model is fitted, in which each data block is represented by an N $$ N $$ -way N $$ N $$ -mode decomposition model (e.g., principal component analysis [PCA], Parafac, Tucker3) and the parameters underlying the common mode are required to be the same for all data blocks this mode belongs to. To estimate the parameters underlying the common mode, a simultaneous strategy is used that pools the information present in all data blocks (i.e., data fusion). In this paper, we propose the T3-PCA model, which represents three- and two-way data with Tucker3 and PCA respectively. This model is less restrictive than the already proposed LMPCA model in which the three-way data block is decomposed according to a Parafac model. To estimate the T3-PCA model parameters, an alternating least-squares algorithm is proposed. The superior performance of the simultaneous T3-PCA strategy over a sequential strategy (i.e., estimating common parameters using information from the three-way data block only) is demonstrated in an extensive simulation study and an application to empirical coupled anxiety data.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过 T3-PCA 进行数据融合:同时分析三向和双向实值耦合数据的全局模型。
在不同的科学领域,研究人员试图通过联合分析包含这些过程的共同方面的信息的不同数据集来深入了解重要的过程。例如,为了解释个性的个体差异,研究人员收集了同一组人的行为特征数据(即,一个人在不同情况下的反应概况),以及另一方面的特征或性格。为了揭示这些耦合数据背后的过程,以所有N-way N $$ N $$ -mode数据块同时拟合一个全局模型,其中每个数据块用N表示 $$ N $$ -way N $$ N $$ -模态分解模型(如主成分分析[PCA]、Parafac、Tucker3)和公共模态的底层参数对于该模态所属的所有数据块都要求相同。为了估计公共模式下的参数,使用了一种同步策略,将所有数据块中的信息集中在一起(即数据融合)。本文提出了T3-PCA模型,分别用Tucker3和PCA表示三向和双向数据。该模型比已经提出的LMPCA模型约束更少,在LMPCA模型中,根据Parafac模型对三向数据块进行分解。为了估计T3-PCA模型参数,提出了一种交替最小二乘算法。在广泛的模拟研究和经验耦合焦虑数据的应用中,证明了同步T3-PCA策略优于顺序策略(即仅使用来自三方数据块的信息估计共同参数)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.00
自引率
3.80%
发文量
34
审稿时长
>12 weeks
期刊介绍: The British Journal of Mathematical and Statistical Psychology publishes articles relating to areas of psychology which have a greater mathematical or statistical aspect of their argument than is usually acceptable to other journals including: • mathematical psychology • statistics • psychometrics • decision making • psychophysics • classification • relevant areas of mathematics, computing and computer software These include articles that address substantitive psychological issues or that develop and extend techniques useful to psychologists. New models for psychological processes, new approaches to existing data, critiques of existing models and improved algorithms for estimating the parameters of a model are examples of articles which may be favoured.
期刊最新文献
Jointly modeling responses and omitted items by a competing risk model: A survival analysis approach. Efficient and accurate variational inference for multilevel threshold autoregressive models in intensive longitudinal data. Data fusion by T3-PCA: A global model for the simultaneous analysis of coupled three-way and two-way real-valued data. Issue Information Assessment of fit of item response theory models: A critical review of the status quo and some future directions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1