Large seeds as a defensive strategy against partial granivory in the Fagaceae

IF 5.3 1区 环境科学与生态学 Q1 ECOLOGY Journal of Ecology Pub Date : 2025-01-16 DOI:10.1111/1365-2745.14480
Si‐Chong Chen, Alexandre Antonelli, Xiao Huang, Neng Wei, Can Dai, Qing‐Feng Wang
{"title":"Large seeds as a defensive strategy against partial granivory in the Fagaceae","authors":"Si‐Chong Chen, Alexandre Antonelli, Xiao Huang, Neng Wei, Can Dai, Qing‐Feng Wang","doi":"10.1111/1365-2745.14480","DOIUrl":null,"url":null,"abstract":"<jats:list> <jats:list-item>Large seeds interact with a wide range of animals (e.g. predators) and are dispersed via certain small animals' foraging behaviours, such as caching. Some of the most iconic species of large‐seeded plants have long fascinated ecologists studying biotic interactions, such as oaks and their relatives in the Fagaceae family.</jats:list-item> <jats:list-item>The Fagaceae acorns are dispersed through synzoochory, a specific dispersal mode in which animal partners act as both seed dispersers and granivores. Although granivory (i.e. seed herbivory) can profoundly impact the survival of plant offspring, partial damage on seed reserves is a prevalent phenomenon that does not always result in seed mortality. However, previous single‐species studies have resulted in mixed evidence across treatments and traits, leaving the impact of partial granivory on plant regeneration unclear.</jats:list-item> <jats:list-item>Using artificial granivory experiments on 1185 seeds of 20 Fagaceae species, here we quantify how partial loss of seed reserve affects seed germination, seedling growth and biomass allocation across a damage gradient from 0% to 96% biomass loss.</jats:list-item> <jats:list-item>We show that, although partial granivory reduces seedling growth (e.g. total biomass and number of leaves), it does not significantly affect seed germination or the overall biomass allocation of seedlings (e.g. leaf mass fraction and root:shoot biomass ratio). Seedlings from seeds more preyed upon have higher specific leaf area, indicating that they tend to grow larger but less protected leaves against herbivores, perhaps to compete for light.</jats:list-item> <jats:list-item><jats:italic>Synthesis</jats:italic>. As seeds dispersed through scatter‐hoarding granivores have evolved relatively large sizes, like Fagaceae acorns, our findings demonstrate that this type of seeds may tolerate partial granivory in exchange for high dispersal efficiency. This study opens new perspectives to our understanding of seed size diversity and evolution. We conclude that seed size per se is a defensive trait, that large seeds counteract potential losses of seed reserve to escape full predation and allow germination.</jats:list-item> </jats:list>","PeriodicalId":191,"journal":{"name":"Journal of Ecology","volume":"43 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ecology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1111/1365-2745.14480","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Large seeds interact with a wide range of animals (e.g. predators) and are dispersed via certain small animals' foraging behaviours, such as caching. Some of the most iconic species of large‐seeded plants have long fascinated ecologists studying biotic interactions, such as oaks and their relatives in the Fagaceae family. The Fagaceae acorns are dispersed through synzoochory, a specific dispersal mode in which animal partners act as both seed dispersers and granivores. Although granivory (i.e. seed herbivory) can profoundly impact the survival of plant offspring, partial damage on seed reserves is a prevalent phenomenon that does not always result in seed mortality. However, previous single‐species studies have resulted in mixed evidence across treatments and traits, leaving the impact of partial granivory on plant regeneration unclear. Using artificial granivory experiments on 1185 seeds of 20 Fagaceae species, here we quantify how partial loss of seed reserve affects seed germination, seedling growth and biomass allocation across a damage gradient from 0% to 96% biomass loss. We show that, although partial granivory reduces seedling growth (e.g. total biomass and number of leaves), it does not significantly affect seed germination or the overall biomass allocation of seedlings (e.g. leaf mass fraction and root:shoot biomass ratio). Seedlings from seeds more preyed upon have higher specific leaf area, indicating that they tend to grow larger but less protected leaves against herbivores, perhaps to compete for light. Synthesis. As seeds dispersed through scatter‐hoarding granivores have evolved relatively large sizes, like Fagaceae acorns, our findings demonstrate that this type of seeds may tolerate partial granivory in exchange for high dispersal efficiency. This study opens new perspectives to our understanding of seed size diversity and evolution. We conclude that seed size per se is a defensive trait, that large seeds counteract potential losses of seed reserve to escape full predation and allow germination.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Ecology
Journal of Ecology 环境科学-生态学
CiteScore
10.90
自引率
5.50%
发文量
207
审稿时长
3.0 months
期刊介绍: Journal of Ecology publishes original research papers on all aspects of the ecology of plants (including algae), in both aquatic and terrestrial ecosystems. We do not publish papers concerned solely with cultivated plants and agricultural ecosystems. Studies of plant communities, populations or individual species are accepted, as well as studies of the interactions between plants and animals, fungi or bacteria, providing they focus on the ecology of the plants. We aim to bring important work using any ecological approach (including molecular techniques) to a wide international audience and therefore only publish papers with strong and ecological messages that advance our understanding of ecological principles.
期刊最新文献
Large seeds as a defensive strategy against partial granivory in the Fagaceae Plant phylogeny, traits and fungal community composition as drivers of plant–soil feedbacks Rooting depth and specific leaf area modify the impact of experimental drought duration on temperate grassland species Nitrogen content of herbarium specimens from arable fields and mesic meadows reflect the intensifying agricultural management during the 20th century Seasonal shifts in plant diversity effects on above‐ground–below‐ground phenological synchrony
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1