首页 > 最新文献

Journal of Ecology最新文献

英文 中文
Environmental conditions affect the allelopathic potential of three invasive alien plants species in North-Eastern France 环境条件影响法国东北部三种外来入侵植物的等位潜力
IF 5.5 1区 环境科学与生态学 Q1 ECOLOGY Pub Date : 2024-11-21 DOI: 10.1111/1365-2745.14447
Victor Talmot, Laurent Hardion, Aaron Sexton, Jonathan Jumeau, Enzo Jugieau, Cybill Staentzel

CONFLICT OF INTEREST STATEMENT

All authors have no conflicts of interest to declare.

利益冲突声明所有作者均无利益冲突声明。
{"title":"Environmental conditions affect the allelopathic potential of three invasive alien plants species in North-Eastern France","authors":"Victor Talmot, Laurent Hardion, Aaron Sexton, Jonathan Jumeau, Enzo Jugieau, Cybill Staentzel","doi":"10.1111/1365-2745.14447","DOIUrl":"https://doi.org/10.1111/1365-2745.14447","url":null,"abstract":"<h2> CONFLICT OF INTEREST STATEMENT</h2>\u0000<p>All authors have no conflicts of interest to declare.</p>","PeriodicalId":191,"journal":{"name":"Journal of Ecology","volume":"1 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142678278","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Indirect effects of warming via phenology on reproductive success of alpine plants 气候变暖通过物候对高山植物繁殖成功率的间接影响
IF 5.5 1区 环境科学与生态学 Q1 ECOLOGY Pub Date : 2024-11-18 DOI: 10.1111/1365-2745.14449
Tianwu Zhang, Yaya Chen, Xiangrong Yang, Hui Zhang, Zengpeng Guo, Guorui Hu, Haonan Bai, Yinguang Sun, Li Huang, Miaojun Ma

CONFLICT OF INTEREST STATEMENT

The authors have no conflict of interest to declare.

利益冲突声明作者无利益冲突声明。
{"title":"Indirect effects of warming via phenology on reproductive success of alpine plants","authors":"Tianwu Zhang, Yaya Chen, Xiangrong Yang, Hui Zhang, Zengpeng Guo, Guorui Hu, Haonan Bai, Yinguang Sun, Li Huang, Miaojun Ma","doi":"10.1111/1365-2745.14449","DOIUrl":"https://doi.org/10.1111/1365-2745.14449","url":null,"abstract":"<h2> CONFLICT OF INTEREST STATEMENT</h2>\u0000<p>The authors have no conflict of interest to declare.</p>","PeriodicalId":191,"journal":{"name":"Journal of Ecology","volume":"7 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142665500","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rhizosphere as a hotspot for microbial necromass deposition into the soil carbon pool 根瘤层是微生物坏死物质沉积到土壤碳库的热点区域
IF 5.5 1区 环境科学与生态学 Q1 ECOLOGY Pub Date : 2024-11-14 DOI: 10.1111/1365-2745.14448
Qitong Wang, Junxiang Ding, Ziliang Zhang, Chao Liang, Hans Lambers, Biao Zhu, Dungang Wang, Jipeng Wang, Peipei Zhang, Na Li, Huajun Yin

CONFLICT OF INTEREST STATEMENT

The authors have no conflicts of interest. Biao Zhu is an Associate Editor of the Journal of Ecology, but took no part in the peer review and decision-making processes for this paper.

利益冲突声明作者无利益冲突。Biao Zhu 是《生态学杂志》的副主编,但未参与本文的同行评审和决策过程。
{"title":"Rhizosphere as a hotspot for microbial necromass deposition into the soil carbon pool","authors":"Qitong Wang, Junxiang Ding, Ziliang Zhang, Chao Liang, Hans Lambers, Biao Zhu, Dungang Wang, Jipeng Wang, Peipei Zhang, Na Li, Huajun Yin","doi":"10.1111/1365-2745.14448","DOIUrl":"https://doi.org/10.1111/1365-2745.14448","url":null,"abstract":"<h2> CONFLICT OF INTEREST STATEMENT</h2>\u0000<p>The authors have no conflicts of interest. Biao Zhu is an Associate Editor of the Journal of Ecology, but took no part in the peer review and decision-making processes for this paper.</p>","PeriodicalId":191,"journal":{"name":"Journal of Ecology","volume":"17 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142637591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Aerial litter mimicry: A novel form of floral deception mediated by a monoterpene synthase 空中垃圾模仿:一种由单萜烯合成酶介导的新型花朵欺骗形式
IF 5.5 1区 环境科学与生态学 Q1 ECOLOGY Pub Date : 2024-11-11 DOI: 10.1111/1365-2745.14446
Ming‐Fai Liu, Junhao Chen, Katherine R. Goodrich, Sung Kay Chiu, Chun‐Chiu Pang, Tanya Scharaschkin, Richard M. K. Saunders
Floral mimics deceive their pollinators by developing visual and olfactory resemblance to various models. We report a flower that exhibits phenotypes like aerial litter and deceives an aerial litter specialist beetle to achieve pollination. We assessed the floral phenology and the effective pollinators of an Australian understorey treelet, Meiogyne heteropetala (Annonaceae). The similarities of morphology, colour and odour between the flowers and co‐occurring aerial litter were investigated. The terpene synthase involved in floral scent emission was identified by expression patterns and product profile. The behavioural responses of the pollinator to various odours were assessed using bioassays. The erotylid beetle Loberus sharpi is the most likely effective pollinator because it was the only pollen‐laden visitor during the pistillate phase. Loberus sharpi was exclusively found in aerial litter and M. heteropetala flowers. The flowers offer an honest shelter reward. The beetle also oviposits there, but most larvae eventually perished as the petals dropped onto the forest floor. The morphology and spectral reflectance of the flowers overlap with aerial litter. The floral scent was dominated by monoterpenes, especially 1,8‐cineole. The cineole synthase MhCINS was the only highly expressed floral terpene synthase and possessed a highly similar product profile to the floral scent composition. The volatile composition of M. heteropetala flowers is distinct from other congeners and highly similar to aerial litter, indicating advergence to aerial litter. Visual and odour resemblance, coupled with low larval survivorship, provides evidence that the beetles were deceived into pollinating the flowers. Behavioural experiments showed that the pollinator was attracted to both aerial litter and M. heteropetala flowers. The beetles were also attracted to 1,8‐cineole and synthetic mixes of floral odour and MhCINS products. The beetles were unable to distinguish floral scent from MhCINS products nor from 1,8‐cineole, suggesting MhCINS alone sufficed to attract the pollinator olfactorily. The beetles, however, preferred aerial litter over flowers. The beetles likely categorised the flower as a general, but not the most preferred, brood substrate. Synthesis. This study reports the first case of floral mimicry of aerial litter and characterises the biochemical process responsible for olfactory mimicry.
拟态花通过与各种模型的视觉和嗅觉相似来欺骗传粉者。我们报告了一种花,它表现出类似于气生落叶的表型,并能欺骗气生落叶专业甲虫以实现授粉。我们评估了澳大利亚林下小乔木Meiogyne heteropetala(芒果科)的花表型和有效传粉媒介。我们研究了花朵与共生气生落叶在形态、颜色和气味上的相似性。通过表达模式和产物图谱确定了参与花香散发的萜烯合成酶。通过生物测定评估了授粉昆虫对各种气味的行为反应。麦角甲虫 Loberus sharpi 最有可能是有效的授粉者,因为它是雌蕊期唯一携带花粉的访客。Loberus sharpi只出现在空中垃圾和M. heteropetala花朵中。花朵提供了一个诚实的庇护所。甲虫也会在这里产卵,但大多数幼虫最终都会因花瓣掉落在森林地面上而死亡。花朵的形态和光谱反射率与空中垃圾重叠。花香以单萜烯为主,尤其是 1,8-蒎烯。辛烯合成酶 MhCINS 是唯一高表达的花萜烯合成酶,其产物特征与花香成分高度相似。M.heteropetala花的挥发性成分与其他同系物不同,与气生废弃物高度相似,表明其对气生废弃物具有亲和性。视觉和气味相似,加上幼虫存活率低,证明甲虫受骗为花授粉。行为实验表明,传粉昆虫既会被空中垃圾吸引,也会被 M. heteropetala 花吸引。甲虫还被 1,8-丁烯和花香与 MhCINS 产品的合成混合物所吸引。甲虫既不能从 MhCINS 产品中分辨出花香,也不能从 1,8-松油中分辨出花香,这表明仅 MhCINS 就足以通过嗅觉吸引授粉昆虫。不过,甲虫更喜欢空中垃圾而不是花朵。甲虫可能将花朵归类为一般的育雏基质,而不是最喜欢的育雏基质。综述。本研究首次报道了气生垃圾的花朵拟态现象,并描述了造成嗅觉拟态的生化过程。
{"title":"Aerial litter mimicry: A novel form of floral deception mediated by a monoterpene synthase","authors":"Ming‐Fai Liu, Junhao Chen, Katherine R. Goodrich, Sung Kay Chiu, Chun‐Chiu Pang, Tanya Scharaschkin, Richard M. K. Saunders","doi":"10.1111/1365-2745.14446","DOIUrl":"https://doi.org/10.1111/1365-2745.14446","url":null,"abstract":"<jats:list> <jats:list-item>Floral mimics deceive their pollinators by developing visual and olfactory resemblance to various models. We report a flower that exhibits phenotypes like aerial litter and deceives an aerial litter specialist beetle to achieve pollination.</jats:list-item> <jats:list-item>We assessed the floral phenology and the effective pollinators of an Australian understorey treelet, <jats:italic>Meiogyne heteropetala</jats:italic> (Annonaceae). The similarities of morphology, colour and odour between the flowers and co‐occurring aerial litter were investigated. The terpene synthase involved in floral scent emission was identified by expression patterns and product profile. The behavioural responses of the pollinator to various odours were assessed using bioassays.</jats:list-item> <jats:list-item>The erotylid beetle <jats:italic>Loberus sharpi</jats:italic> is the most likely effective pollinator because it was the only pollen‐laden visitor during the pistillate phase. <jats:italic>Loberus sharpi</jats:italic> was exclusively found in aerial litter and <jats:italic>M. heteropetala</jats:italic> flowers. The flowers offer an honest shelter reward. The beetle also oviposits there, but most larvae eventually perished as the petals dropped onto the forest floor. The morphology and spectral reflectance of the flowers overlap with aerial litter. The floral scent was dominated by monoterpenes, especially 1,8‐cineole. The cineole synthase MhCINS was the only highly expressed floral terpene synthase and possessed a highly similar product profile to the floral scent composition. The volatile composition of <jats:italic>M. heteropetala</jats:italic> flowers is distinct from other congeners and highly similar to aerial litter, indicating advergence to aerial litter. Visual and odour resemblance, coupled with low larval survivorship, provides evidence that the beetles were deceived into pollinating the flowers. Behavioural experiments showed that the pollinator was attracted to both aerial litter and <jats:italic>M. heteropetala</jats:italic> flowers. The beetles were also attracted to 1,8‐cineole and synthetic mixes of floral odour and MhCINS products. The beetles were unable to distinguish floral scent from MhCINS products nor from 1,8‐cineole, suggesting MhCINS alone sufficed to attract the pollinator olfactorily. The beetles, however, preferred aerial litter over flowers. The beetles likely categorised the flower as a general, but not the most preferred, brood substrate.</jats:list-item> <jats:list-item><jats:italic>Synthesis.</jats:italic> This study reports the first case of floral mimicry of aerial litter and characterises the biochemical process responsible for olfactory mimicry.</jats:list-item> </jats:list>","PeriodicalId":191,"journal":{"name":"Journal of Ecology","volume":"45 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142599127","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Testing the contribution of vertebrate predators and leaf traits to mainland–island differences in insect herbivory on oaks 测试脊椎动物捕食者和叶片特征对橡树上昆虫草食性的大陆与岛屿差异的贡献
IF 5.5 1区 环境科学与生态学 Q1 ECOLOGY Pub Date : 2024-11-05 DOI: 10.1111/1365-2745.14444
Carla Vázquez-González, Luis Abdala-Roberts, Beatriz Lago-Núñez, Lydia S. Dean, Miquel Capó, Raúl de la Mata, Ayco J. M. Tack, Johan A. Stenberg, Felisa Covelo, Ana Cao, Joana Cursach, Ana Hernández-Serrano, Finn Hansen, Kailen A. Mooney, Xoaquín Moreira
<h2>1 INTRODUCTION</h2><p>Islands provide valuable settings to study the ecological and evolutionary drivers of biodiversity (Gillespie et al., <span>2008</span>; MacArthur & Wilson, <span>2001</span>; Ricklefs & Bermingham, <span>2007</span>), species interactions (Spiller & Schoener, <span>1990</span>; Traveset et al., <span>2013</span>), and trait evolution and speciation (Barrett et al., <span>1997</span>; Burns, <span>2019</span>; Carvajal-Endara et al., <span>2020</span>; Grant & Grant, <span>2007</span>). To address insularity effects, studies have either compared islands differing in historical and physical features (e.g. island size, isolation, geological age), or insular systems with their closest mainland counterparts (Moreira & Abdala-Roberts, <span>2022</span>). Within this body of research, work on plant–herbivore interactions poses that herbivory should be weaker on islands than on mainland as a result of lower herbivore abundance and diversity owing to processes such as species dispersal constraints and environmental filtering (Carlquist, <span>1974</span>; Losos & Ricklefs, <span>2009</span>; Ricklefs & Bermingham, <span>2007</span>). This hypothesis has primarily been formulated and tested for mammalian herbivory, given the general absence of mammals in most insular systems (Burns, <span>2014</span>; Cubas et al., <span>2019</span>; Salladay & Ramirez, <span>2018</span>; Vourc'h et al., <span>2001</span>). Alternatively, insect herbivory could be potentially higher in islands than on mainland due to reduced predation pressure (Schoener et al., <span>2016</span>; Terborgh, <span>2010</span>), which may lead to overconsumption by phytophagous insects. In this regard, a recent meta-analysis found no overall significant differences in herbivory by invertebrates (i.e. insects and molluscs) between islands and mainland (Moreira et al., <span>2021</span>). However, these results were based on a limited number of studies (only three on insects), underscoring the need for additional research on insect herbivory on islands and calling for further work to reassess predictions and test underlying mechanisms.</p><p>A critical gap in our understanding of insularity effects on insect herbivory has been the lack of experimental studies on top-down effects by natural enemies, that is predators and parasitoids (Abdala-Roberts et al., <span>2019</span>; Hairston et al., <span>1960</span>; Price et al., <span>1980</span>). There are good examples of such tests involving inter-island comparisons (Henneman & Memmott, <span>2001</span>; Holt, <span>2010</span>; Kolbe et al., <span>2023</span>; Spiller & Schoener, <span>1990</span>), but mainland vs. island comparisons of natural enemy effects are virtually absent (Moreira & Abdala-Roberts, <span>2022</span>). Analogous to studies comparing islands with different features, some authors have argued that top-down effects of predators should be weaker on islan
1 引言岛屿为研究生物多样性的生态和进化驱动因素(Gillespie 等人,2008 年;MacArthur &amp; Wilson,2001 年;Ricklefs &amp; Bermingham,2007 年)、物种相互作用(Spiller &amp; Schoener,1990 年;Traveset 等人,2013 年)以及性状进化和物种分化(Barrett 等人,1997 年;Burns,2019 年;Carvajal-Endara 等人,2020 年;Grant &amp; Grant,2007 年)提供了宝贵的环境。为了解决孤岛效应问题,研究将不同历史和物理特征(如岛屿大小、隔离程度、地质年代)的岛屿或孤岛系统与其最接近的大陆对应系统进行了比较(Moreira &amp; Abdala-Roberts,2022年)。在这些研究中,关于植物与食草动物相互作用的研究认为,由于物种扩散限制和环境过滤等原因,食草动物的丰度和多样性较低,因此岛屿上的草食性应该比大陆上弱(Carlquist, 1974; Losos &amp; Ricklefs, 2009; Ricklefs &amp; Bermingham, 2007)。这一假说主要是针对哺乳动物的食草行为提出和验证的,因为在大多数岛屿系统中普遍没有哺乳动物(Burns,2014;Cubas等人,2019;Salladay &amp; Ramirez,2018;Vourc'h等人,2001)。另外,由于捕食压力降低(Schoener等人,2016;Terborgh,2010),岛屿上的昆虫食草量可能比大陆上更高(Schoener等人,2016;Terborgh,2010),这可能导致植食性昆虫的过度消耗。在这方面,最近的一项荟萃分析发现,岛屿和大陆之间无脊椎动物(即昆虫和软体动物)的食草量总体上没有显著差异(Moreira 等人,2021 年)。然而,这些结果是基于数量有限的研究(仅有三项关于昆虫的研究)得出的,这强调了对岛屿昆虫食草性进行更多研究的必要性,并呼吁开展进一步的工作,以重新评估预测结果并测试潜在机制。在我们对岛屿性对昆虫食草性影响的理解方面,一个关键的差距是缺乏对天敌(即捕食者和寄生虫)自上而下影响的实验研究(Abdala-Roberts等人,2019年;Hairston等人,1960年;Price等人,1980年)。此类测试有岛屿间比较的良好实例(Henneman &amp; Memmott, 2001; Holt, 2010; Kolbe et al., 2023; Spiller &amp; Schoener, 1990),但大陆与岛屿的天敌效应比较几乎不存在(Moreira &amp; Abdala-Roberts, 2022)。与比较具有不同特征的岛屿的研究类似,一些学者认为,捕食者的自上而下效应在岛屿上应该比在大陆上弱(Holt,2010;Schoener &amp; Spiller,2010),这可能是因为岛屿上捕食者的丰度和多样性较低,甚至完全没有较高的营养级(Holt,2010;Terborgh,2010)。然而,一些已知对昆虫具有强大自上而下控制能力的脊椎动物捕食者(如鸟类、蝙蝠、蜥蜴)(Bael 等人,2008 年;Maas 等人,2016 年;Mooney 等人,2010 年;Van Bael 等人,2003 年;Whelan 等人,2008 年)可以表现出较高的种群密度、2008)在岛屿上会表现出很高的种群密度,部分原因是缺少顶级捕食者(Jones等人,2009;Presley &amp; Willig, 2022; Terborgh, 2023),从而可能加强昆虫食草的自上而下的调节。食草模式也可能受到植物物理和化学防御特性自下而上控制的影响(Agrawal,2011;Carmona 等人,2011;Marquis,1992;Rhoades,1979),但分析岛屿植物防御性的研究并不多见(Moreira 等人,2021)。岛屿与大陆在非生物条件(如气候或土壤)上的差异可形成植物性状(如非生物胁迫或资源可用性的影响)的差异,从而预测草食性,包括化学防御或营养性状。例如,与大陆相比,岛屿的气候往往更潮湿、季节性更弱(Weigelt 等人,2013 年),这就是有利的生长条件,可能会导致更高的生长和营养成分,而牺牲防御分配(Coley 等人,1985 年)。同时,岛屿可能是低生产力土壤类型的特征(如超基性岩土壤;Pillon 等人,2010 年),这可能导致相反的预测,即植物生长较低,防御能力较强,从而导致草食动物较少。此外,与气候和土壤有关的变异的程度和性质往往具有强烈的地点特异性,因此要谨慎对待非生物介导的岛屿-大陆植物性状差异的方向。
{"title":"Testing the contribution of vertebrate predators and leaf traits to mainland–island differences in insect herbivory on oaks","authors":"Carla Vázquez-González, Luis Abdala-Roberts, Beatriz Lago-Núñez, Lydia S. Dean, Miquel Capó, Raúl de la Mata, Ayco J. M. Tack, Johan A. Stenberg, Felisa Covelo, Ana Cao, Joana Cursach, Ana Hernández-Serrano, Finn Hansen, Kailen A. Mooney, Xoaquín Moreira","doi":"10.1111/1365-2745.14444","DOIUrl":"https://doi.org/10.1111/1365-2745.14444","url":null,"abstract":"&lt;h2&gt;1 INTRODUCTION&lt;/h2&gt;\u0000&lt;p&gt;Islands provide valuable settings to study the ecological and evolutionary drivers of biodiversity (Gillespie et al., &lt;span&gt;2008&lt;/span&gt;; MacArthur &amp; Wilson, &lt;span&gt;2001&lt;/span&gt;; Ricklefs &amp; Bermingham, &lt;span&gt;2007&lt;/span&gt;), species interactions (Spiller &amp; Schoener, &lt;span&gt;1990&lt;/span&gt;; Traveset et al., &lt;span&gt;2013&lt;/span&gt;), and trait evolution and speciation (Barrett et al., &lt;span&gt;1997&lt;/span&gt;; Burns, &lt;span&gt;2019&lt;/span&gt;; Carvajal-Endara et al., &lt;span&gt;2020&lt;/span&gt;; Grant &amp; Grant, &lt;span&gt;2007&lt;/span&gt;). To address insularity effects, studies have either compared islands differing in historical and physical features (e.g. island size, isolation, geological age), or insular systems with their closest mainland counterparts (Moreira &amp; Abdala-Roberts, &lt;span&gt;2022&lt;/span&gt;). Within this body of research, work on plant–herbivore interactions poses that herbivory should be weaker on islands than on mainland as a result of lower herbivore abundance and diversity owing to processes such as species dispersal constraints and environmental filtering (Carlquist, &lt;span&gt;1974&lt;/span&gt;; Losos &amp; Ricklefs, &lt;span&gt;2009&lt;/span&gt;; Ricklefs &amp; Bermingham, &lt;span&gt;2007&lt;/span&gt;). This hypothesis has primarily been formulated and tested for mammalian herbivory, given the general absence of mammals in most insular systems (Burns, &lt;span&gt;2014&lt;/span&gt;; Cubas et al., &lt;span&gt;2019&lt;/span&gt;; Salladay &amp; Ramirez, &lt;span&gt;2018&lt;/span&gt;; Vourc'h et al., &lt;span&gt;2001&lt;/span&gt;). Alternatively, insect herbivory could be potentially higher in islands than on mainland due to reduced predation pressure (Schoener et al., &lt;span&gt;2016&lt;/span&gt;; Terborgh, &lt;span&gt;2010&lt;/span&gt;), which may lead to overconsumption by phytophagous insects. In this regard, a recent meta-analysis found no overall significant differences in herbivory by invertebrates (i.e. insects and molluscs) between islands and mainland (Moreira et al., &lt;span&gt;2021&lt;/span&gt;). However, these results were based on a limited number of studies (only three on insects), underscoring the need for additional research on insect herbivory on islands and calling for further work to reassess predictions and test underlying mechanisms.&lt;/p&gt;\u0000&lt;p&gt;A critical gap in our understanding of insularity effects on insect herbivory has been the lack of experimental studies on top-down effects by natural enemies, that is predators and parasitoids (Abdala-Roberts et al., &lt;span&gt;2019&lt;/span&gt;; Hairston et al., &lt;span&gt;1960&lt;/span&gt;; Price et al., &lt;span&gt;1980&lt;/span&gt;). There are good examples of such tests involving inter-island comparisons (Henneman &amp; Memmott, &lt;span&gt;2001&lt;/span&gt;; Holt, &lt;span&gt;2010&lt;/span&gt;; Kolbe et al., &lt;span&gt;2023&lt;/span&gt;; Spiller &amp; Schoener, &lt;span&gt;1990&lt;/span&gt;), but mainland vs. island comparisons of natural enemy effects are virtually absent (Moreira &amp; Abdala-Roberts, &lt;span&gt;2022&lt;/span&gt;). Analogous to studies comparing islands with different features, some authors have argued that top-down effects of predators should be weaker on islan","PeriodicalId":191,"journal":{"name":"Journal of Ecology","volume":"18 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142588817","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Aridity and forest age mediate landscape scale patterns of tropical forest resistance to cyclonic storms 湿度和林龄对热带雨林抵御气旋风暴的景观尺度模式具有中介作用
IF 5.5 1区 环境科学与生态学 Q1 ECOLOGY Pub Date : 2024-11-03 DOI: 10.1111/1365-2745.14437
German Vargas G., Humfredo Marcano-Vega, Tom Ruzycki, Tana E. Wood, William R. L. Anderegg, Jennifer S. Powers, Eileen H. Helmer
<h2>1 INTRODUCTION</h2><p>Climate change is expected to increase the intensity of cyclonic storms, hereafter hurricanes, due to rising ocean heat energy (Seneviratne et al., <span>2023</span>). Large areas of tropical forests experience hurricane disturbances, which strongly influences forest function and structure (Lugo, <span>2008</span>). The high biological and functional diversity of these ecosystems poses challenges for predicting their response to increased hurricane intensity (Lin et al., <span>2020</span>; McLaren et al., <span>2019</span>; Uriarte et al., <span>2019</span>). It is expected that forest resistance to hurricane disturbance will vary based on factors, such as forest age, water availability, structure, topography, land-use history and species composition (Feng et al., <span>2020</span>; Uriarte et al., <span>2009</span>). This complexity highlights the need for a unifying framework to study forest resistance to hurricanes across broad environmental gradients.</p><p>Classic ecological theory suggests that, as ecosystems age, their attributes will favour slower energy exchange with greater ecosystem homeostasis (Odum, <span>1969</span>). This provides a framework that links ecological succession with ecosystem stability in the face of perturbations (Poorter et al., <span>2023</span>). In the context of hurricane disturbances, this can be defined as an increase in forest resistance with forest age. However, for this to hold true, the functional properties of forests conferring resistance to hurricane disturbances should covary along with ecosystem development, which can be context dependent (Vitousek & Reiners, <span>1975</span>; Zak, <span>2014</span>). It is crucial, then, to evaluate whether the factors influencing tropical forest function along gradients of succession mediate resistance to hurricanes.</p><p>During hurricane disturbances, tree mortality primarily occurs through uprooting and stem breakage (Lugo, <span>2008</span>), especially among tall tree species with low wood density (WD; Curran et al., <span>2008</span>; Helmer et al., <span>2023b</span>; Ibanez et al., <span>2024</span>; Ogle et al., <span>2006</span>; Taylor et al., <span>2023</span>; Uriarte et al., <span>2019</span>; Zimmerman et al., <span>1994</span>). Community-level patterns of plant traits, such as WD or tree height, vary across gradients of water availability and forest age (Bruelheide et al., <span>2018</span>). These traits link to species' growing strategies, where conservative traits such as high WD and short stature are found in ‘slow-safe’ species and the opposite in ‘fast-risky’ species (Díaz et al., <span>2016</span>; Reich, <span>2014</span>). For instance, in arid regions, plant species tend to show shorter stature, deep roots, high WD and xylem resistant to drought stress (Olson et al., <span>2018</span>; Tumber-Dávila et al., <span>2022</span>; Vargas G et al., <span>2022</span>), representing a physiological strategy associ
1 引言 由于海洋热能上升,预计气候变化将增加气旋风暴(以下简称飓风)的强度(Seneviratne 等人,2023 年)。大面积的热带森林会受到飓风的干扰,从而对森林的功能和结构产生强烈影响(Lugo,2008 年)。这些生态系统在生物和功能方面的高度多样性给预测它们对飓风强度增加的反应带来了挑战(Lin 等人,2020 年;McLaren 等人,2019 年;Uriarte 等人,2019 年)。预计森林对飓风干扰的抵抗力将因各种因素而异,如林龄、水供应、结构、地形、土地使用历史和物种组成等(Feng 等,2020 年;Uriarte 等,2009 年)。这种复杂性突出表明,需要一个统一的框架来研究森林在广泛的环境梯度中抵抗飓风的能力。经典的生态理论认为,随着生态系统年龄的增长,其属性将有利于减缓能量交换,提高生态系统的平衡能力(Odum,1969 年)。这提供了一个框架,将生态演替与生态系统在面对干扰时的稳定性联系起来(Poorter 等人,2023 年)。在飓风干扰的背景下,这可以定义为森林的抵抗力随着森林年龄的增长而增强。然而,要使这一点成立,森林抵抗飓风干扰的功能特性应与生态系统的发展共变,而生态系统的发展可能取决于具体情况(Vitousek &amp; Reiners, 1975; Zak, 2014)。在飓风干扰期间,树木死亡主要是通过连根拔起和茎干断裂造成的(Lugo,2008 年),尤其是木质密度低的高大树种(WD;Curran 等,2008 年;Helmer 等,2014 年)、2008;Helmer 等人,2023b;Ibanez 等人,2024;Ogle 等人,2006;Taylor 等人,2023;Uriarte 等人,2019;Zimmerman 等人,1994)。植物群落水平的特征模式(如 WD 或树高)在不同的水分供应梯度和森林年龄中各不相同(Bruelheide 等人,2018 年)。这些性状与物种的生长策略有关,在 "慢安全 "物种中存在高WD和矮身材等保守性状,而在 "快风险 "物种中则相反(Díaz等人,2016;Reich,2014)。例如,在干旱地区,植物物种往往表现出较矮的身材、较深的根系、较高的WD和木质部对干旱胁迫的抗性(Olson等人,2018年;Tumber-Dávila等人,2022年;Vargas G等人,2022年),这代表了一种与干旱胁迫期间较高存活率相关的生理策略(Anderegg等人,2016年)。相反,低 WD 树种通常在干旱频谱湿润一端的幼林中占主导地位,而高 WD 树种则在干旱一端的幼林中占主导地位(Poorter 等人,2019 年;图 1a)。(a) 波多黎各、别克斯岛和库莱布拉岛与特定生命区气候条件相关的三种森林类型的 CWM-WD 与林分年龄之间的关系。(b) 假设预测:飓风将重新启动功能轨迹,但由于环境因素对森林年龄的影响,由此产生的功能组成将取决于可用的物种库(面板 a)。在(b)中,各点代表不同时期的 CWM-WD,灰色阴影区域代表 CWM-WD 的 95% 置信区间,蓝色直线是 CWM-WD 随时间变化的平均趋势线,垂直虚线代表飓风事件,三条虚线代表假设的功能轨迹。(c) 基部面积死亡率 (MR),以飓风玛丽亚前后普查区间内波多黎各、别克斯岛和库莱布拉岛 180 个森林资源清查分析地块的基部面积损失百分比来衡量。然而,这一假设在广阔的地理范围内是否成立仍是一个悬而未决的问题。最近的遥感分析表明,树冠绿色度的大幅降低和非光合植被的增加可能与高大的林冠、飓风暴露、老林龄或较潮湿的森林有关(Feng 等人,2020 年;Hall 等人,2020 年;Leitold 等人,2022 年;Van Beusekom 等人,2018 年)。然而,迄今为止只有一项研究使用小样本量(n &lt;30)对飓风干扰进行了地面验证,其中冠层高度是解释飓风期间生物量损失的最重要森林特征(Hall 等人,2020 年)。
{"title":"Aridity and forest age mediate landscape scale patterns of tropical forest resistance to cyclonic storms","authors":"German Vargas G., Humfredo Marcano-Vega, Tom Ruzycki, Tana E. Wood, William R. L. Anderegg, Jennifer S. Powers, Eileen H. Helmer","doi":"10.1111/1365-2745.14437","DOIUrl":"https://doi.org/10.1111/1365-2745.14437","url":null,"abstract":"&lt;h2&gt;1 INTRODUCTION&lt;/h2&gt;\u0000&lt;p&gt;Climate change is expected to increase the intensity of cyclonic storms, hereafter hurricanes, due to rising ocean heat energy (Seneviratne et al., &lt;span&gt;2023&lt;/span&gt;). Large areas of tropical forests experience hurricane disturbances, which strongly influences forest function and structure (Lugo, &lt;span&gt;2008&lt;/span&gt;). The high biological and functional diversity of these ecosystems poses challenges for predicting their response to increased hurricane intensity (Lin et al., &lt;span&gt;2020&lt;/span&gt;; McLaren et al., &lt;span&gt;2019&lt;/span&gt;; Uriarte et al., &lt;span&gt;2019&lt;/span&gt;). It is expected that forest resistance to hurricane disturbance will vary based on factors, such as forest age, water availability, structure, topography, land-use history and species composition (Feng et al., &lt;span&gt;2020&lt;/span&gt;; Uriarte et al., &lt;span&gt;2009&lt;/span&gt;). This complexity highlights the need for a unifying framework to study forest resistance to hurricanes across broad environmental gradients.&lt;/p&gt;\u0000&lt;p&gt;Classic ecological theory suggests that, as ecosystems age, their attributes will favour slower energy exchange with greater ecosystem homeostasis (Odum, &lt;span&gt;1969&lt;/span&gt;). This provides a framework that links ecological succession with ecosystem stability in the face of perturbations (Poorter et al., &lt;span&gt;2023&lt;/span&gt;). In the context of hurricane disturbances, this can be defined as an increase in forest resistance with forest age. However, for this to hold true, the functional properties of forests conferring resistance to hurricane disturbances should covary along with ecosystem development, which can be context dependent (Vitousek &amp; Reiners, &lt;span&gt;1975&lt;/span&gt;; Zak, &lt;span&gt;2014&lt;/span&gt;). It is crucial, then, to evaluate whether the factors influencing tropical forest function along gradients of succession mediate resistance to hurricanes.&lt;/p&gt;\u0000&lt;p&gt;During hurricane disturbances, tree mortality primarily occurs through uprooting and stem breakage (Lugo, &lt;span&gt;2008&lt;/span&gt;), especially among tall tree species with low wood density (WD; Curran et al., &lt;span&gt;2008&lt;/span&gt;; Helmer et al., &lt;span&gt;2023b&lt;/span&gt;; Ibanez et al., &lt;span&gt;2024&lt;/span&gt;; Ogle et al., &lt;span&gt;2006&lt;/span&gt;; Taylor et al., &lt;span&gt;2023&lt;/span&gt;; Uriarte et al., &lt;span&gt;2019&lt;/span&gt;; Zimmerman et al., &lt;span&gt;1994&lt;/span&gt;). Community-level patterns of plant traits, such as WD or tree height, vary across gradients of water availability and forest age (Bruelheide et al., &lt;span&gt;2018&lt;/span&gt;). These traits link to species' growing strategies, where conservative traits such as high WD and short stature are found in ‘slow-safe’ species and the opposite in ‘fast-risky’ species (Díaz et al., &lt;span&gt;2016&lt;/span&gt;; Reich, &lt;span&gt;2014&lt;/span&gt;). For instance, in arid regions, plant species tend to show shorter stature, deep roots, high WD and xylem resistant to drought stress (Olson et al., &lt;span&gt;2018&lt;/span&gt;; Tumber-Dávila et al., &lt;span&gt;2022&lt;/span&gt;; Vargas G et al., &lt;span&gt;2022&lt;/span&gt;), representing a physiological strategy associ","PeriodicalId":191,"journal":{"name":"Journal of Ecology","volume":"122 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142574467","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Climate-driven shifts in plant–soil feedback of a perennial grass species 多年生禾本科植物在气候驱动下的植物-土壤反馈变化
IF 5.5 1区 环境科学与生态学 Q1 ECOLOGY Pub Date : 2024-11-03 DOI: 10.1111/1365-2745.14443
Anna Florianová, Zuzana Münzbergová
<h2>1 INTRODUCTION</h2><p>Plant–soil feedback (PSF)—a process where plants alter the biotic and abiotic properties of soil they grow in, which subsequently influences the performance of plants grown in that soil in the future (Bever et al., <span>1997</span>)—has been recognized as an important driver of plant community assembly and ecosystem functioning (Bardgett & van der Putten, <span>2014</span>; Reynolds et al., <span>2003</span>). High rates of recently observed as well as expected changes in temperature and precipitation regimes (IPCC, <span>2014</span>) are likely going to affect the distribution of soil microbes and plants and modify the ways plants and soil interact (van der Putten et al., <span>2016</span>). Understanding the impact of climate change on PSF is thus crucial for predicting the consequences of climate change for ecosystems and for providing avenues to mitigate its consequences in natural and applied systems.</p><p>Plants exhibit local adaptations to specific climatic conditions (Anderson & Song, <span>2020</span>; Nicotra et al., <span>2010</span>; Sammarco et al., <span>2022</span>) and their associated soil biota (Crémieux et al., <span>2008</span>; Johnson et al., <span>2010</span>; Pánková et al., <span>2014</span>). At the same time, soil biota can adapt to specific climate and to local plant genotypes (Johnson et al., <span>2010</span>; Tack et al., <span>2012</span>). These adaptations, along with changes in the composition of soil biota communities in response to genetic or species composition of local plant communities, shape the outcome of plant–soil interactions (Blanquart et al., <span>2013</span>; Hoeksema & Forde, <span>2008</span>; Kulmatiski et al., <span>2008</span>; van der Putten et al., <span>2013</span>). The distribution of both plants and their associated soil biota is largely driven by spatial variation in climatic conditions (Blankinship et al., <span>2011</span>; Zhou et al., <span>2020</span>). It may thus be expected that climate change will affect PSF as well (van der Putten et al., <span>2016</span>). Indeed, Hassan et al. (<span>2022</span>) in their meta-analysis showed that drought and warming can induce context-specific shifts in PSF, which are dependent on plant functional groups, life history traits and experimental conditions.</p><p>Climate change may lead to novel or altered interactions between plants and soil biota (Bardgett & Wardle, <span>2010</span>) due to differences in their respective rates and mechanisms of adaptation to novel conditions (van der Putten et al., <span>2009</span>). For example, in case of asynchronous range shifts, that is in a situation when soil biota migrate faster to the new environment than plants (or oppositely), plants of a certain climatic origin encounter soil biota of a different climatic origin. This can disrupt established negative PSF caused by specialized antagonistic microbes in the plant's original range (Engelkes et al., <s
1 引言 植物-土壤反馈(PSF)--植物改变其生长土壤的生物和非生物属性,进而影响未来在该土壤中生长的植物的表现的过程(Bever 等人,1997 年)--已被认为是植物群落组合和生态系统功能的重要驱动力(Bardgett &amp; van der Putten, 2014; Reynolds 等人,2003 年)。最近观测到的以及预期的温度和降水机制的高速变化(IPCC,2014 年)很可能会影响土壤微生物和植物的分布,并改变植物和土壤的相互作用方式(van der Putten 等人,2016 年)。因此,了解气候变化对 PSF 的影响对于预测气候变化对生态系统的影响以及为减轻气候变化对自然和应用系统的影响提供途径至关重要。植物表现出对特定气候条件的局部适应性(Anderson &amp; Song, 2020; Nicotra et al.同时,土壤生物区系可适应特定气候和当地植物基因型(Johnson 等人,2010 年;Tack 等人,2012 年)。这些适应性以及土壤生物群落组成随当地植物群落基因或物种组成而发生的变化,决定了植物与土壤相互作用的结果(Blanquart 等人,2013 年;Hoeksema &amp; Forde, 2008 年;Kulmatiski 等人,2008 年;van der Putten 等人,2013 年)。植物及其相关土壤生物区系的分布在很大程度上受气候条件空间变化的影响(Blankinship 等人,2011 年;Zhou 等人,2020 年)。因此,预计气候变化也会影响 PSF(van der Putten 等人,2016 年)。事实上,Hassan 等人(2022 年)的荟萃分析表明,干旱和变暖会引起 PSF 的特定环境变化,这种变化取决于植物功能群、生活史特征和实验条件。气候变化可能会导致植物与土壤生物区系之间新的或改变的相互作用(Bardgett &amp; Wardle, 2010),原因是它们各自对新条件的适应速度和机制不同(van der Putten 等人,2009 年)。例如,在异步范围转移的情况下,即土壤生物群迁移到新环境的速度快于植物(或相反),某种气候起源的植物会遇到不同气候起源的土壤生物群。这可能会破坏植物在原生地由专门的拮抗微生物造成的负PSF(Engelkes等人,2008年;van Grunsven等人,2007年),而在新环境中缺乏适应的互惠生物也会限制植物的生长(Nunez等人,2009年)。环境背景在形成 PSF 方面也起着至关重要的作用(De Long 等人,2019 年;van der Putten 等人,2016 年)。之前操纵栽培条件的研究表明,温度和湿度水平会影响土壤生物区系的组成和活性(Deveautour 等人,2018 年;Heinze 等人,2017 年;Siebert 等人,2019 年),以及植物生物量分配和根系结构(Bergmann 等人,2016 年;Cortois 等人,2016 年)、2016;Cortois 等人,2016),从而改变植物根系与土壤相互作用的强度(Aldorfova &amp; Munzbergova, 2019;Duell 等人,2019;Florianova &amp; Munzbergova, 2018;Fry 等人,2018;Kaisermann 等人,2017)。重要的是,各个土壤生物群落对气候条件的敏感度以及与植物的共同适应程度可能有所不同。一般来说,与土壤互生生物相比,土壤病原体更为专一,与植物的共同适应程度更高(Molina &amp; Horton, 2015; Smith &amp; Read, 2008)。要理解气候变化如何通过土壤生物区系的变化影响植物,就必须同时操纵土壤来源、植物来源和气候条件的所有因子组合。在这三重框架内,已经探索了几种双重相互作用,如植物种群的遗传分化和表型可塑性对气候的响应(Hamann 等人,2016 年;Munzbergova 等人,2017 年;Nicotra 等人,2017 年)、2017;Nicotra 等人,2010;Valladares 等人,2014)、土壤生物群的特异性(Cardinaux 等人,2018;Koorem 等人,2020;Pankova 等人,2011;Van Nuland 等人,2017)或土壤生物群的气候依赖性(von Holle 等人,2020)。在本研究中,我们以在欧洲大部分地区的高山草地上占主导地位的多年生禾本科植物 Festuca rubra 为模型,研究了土壤生物区系起源、植物起源和栽培气候之间的相互作用。
{"title":"Climate-driven shifts in plant–soil feedback of a perennial grass species","authors":"Anna Florianová, Zuzana Münzbergová","doi":"10.1111/1365-2745.14443","DOIUrl":"https://doi.org/10.1111/1365-2745.14443","url":null,"abstract":"&lt;h2&gt;1 INTRODUCTION&lt;/h2&gt;\u0000&lt;p&gt;Plant–soil feedback (PSF)—a process where plants alter the biotic and abiotic properties of soil they grow in, which subsequently influences the performance of plants grown in that soil in the future (Bever et al., &lt;span&gt;1997&lt;/span&gt;)—has been recognized as an important driver of plant community assembly and ecosystem functioning (Bardgett &amp; van der Putten, &lt;span&gt;2014&lt;/span&gt;; Reynolds et al., &lt;span&gt;2003&lt;/span&gt;). High rates of recently observed as well as expected changes in temperature and precipitation regimes (IPCC, &lt;span&gt;2014&lt;/span&gt;) are likely going to affect the distribution of soil microbes and plants and modify the ways plants and soil interact (van der Putten et al., &lt;span&gt;2016&lt;/span&gt;). Understanding the impact of climate change on PSF is thus crucial for predicting the consequences of climate change for ecosystems and for providing avenues to mitigate its consequences in natural and applied systems.&lt;/p&gt;\u0000&lt;p&gt;Plants exhibit local adaptations to specific climatic conditions (Anderson &amp; Song, &lt;span&gt;2020&lt;/span&gt;; Nicotra et al., &lt;span&gt;2010&lt;/span&gt;; Sammarco et al., &lt;span&gt;2022&lt;/span&gt;) and their associated soil biota (Crémieux et al., &lt;span&gt;2008&lt;/span&gt;; Johnson et al., &lt;span&gt;2010&lt;/span&gt;; Pánková et al., &lt;span&gt;2014&lt;/span&gt;). At the same time, soil biota can adapt to specific climate and to local plant genotypes (Johnson et al., &lt;span&gt;2010&lt;/span&gt;; Tack et al., &lt;span&gt;2012&lt;/span&gt;). These adaptations, along with changes in the composition of soil biota communities in response to genetic or species composition of local plant communities, shape the outcome of plant–soil interactions (Blanquart et al., &lt;span&gt;2013&lt;/span&gt;; Hoeksema &amp; Forde, &lt;span&gt;2008&lt;/span&gt;; Kulmatiski et al., &lt;span&gt;2008&lt;/span&gt;; van der Putten et al., &lt;span&gt;2013&lt;/span&gt;). The distribution of both plants and their associated soil biota is largely driven by spatial variation in climatic conditions (Blankinship et al., &lt;span&gt;2011&lt;/span&gt;; Zhou et al., &lt;span&gt;2020&lt;/span&gt;). It may thus be expected that climate change will affect PSF as well (van der Putten et al., &lt;span&gt;2016&lt;/span&gt;). Indeed, Hassan et al. (&lt;span&gt;2022&lt;/span&gt;) in their meta-analysis showed that drought and warming can induce context-specific shifts in PSF, which are dependent on plant functional groups, life history traits and experimental conditions.&lt;/p&gt;\u0000&lt;p&gt;Climate change may lead to novel or altered interactions between plants and soil biota (Bardgett &amp; Wardle, &lt;span&gt;2010&lt;/span&gt;) due to differences in their respective rates and mechanisms of adaptation to novel conditions (van der Putten et al., &lt;span&gt;2009&lt;/span&gt;). For example, in case of asynchronous range shifts, that is in a situation when soil biota migrate faster to the new environment than plants (or oppositely), plants of a certain climatic origin encounter soil biota of a different climatic origin. This can disrupt established negative PSF caused by specialized antagonistic microbes in the plant's original range (Engelkes et al., &lt;s","PeriodicalId":191,"journal":{"name":"Journal of Ecology","volume":"17 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142574468","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interspecific trait differences drive plant community responses on serpentine soils 种间性状差异驱动蛇纹石土壤上的植物群落反应
IF 5.5 1区 环境科学与生态学 Q1 ECOLOGY Pub Date : 2024-11-02 DOI: 10.1111/1365-2745.14429
Guillaume Delhaye, Panayiotis G. Dimitrakopoulos, George C. Adamidis
Serpentine ecosystems are characterised by multiple environmental stressors: high levels of trace metals such as nickel (Ni), low availability of macronutrients and low water retention. These harsh environmental conditions exert a strong selective force on the vegetation, but their effect on community assembly processes and the functional trait composition remains unknown. In 26 plots on four serpentine sites on Lesbos Island (Greece), we measured six leaf functional traits related to resource acquisition and stress resistance on the 20 most abundant plant species. We quantified the proportion of variance explained by inter‐ and intraspecific trait differences and tested if individual species showed changes in trait values explained by soil Ni content. We investigated the adaptive value and the community level changes for each trait along the natural soil Ni gradient using a mixed model approach and functional diversity analyses. We tested the role of the abundant serpentine endemic and Ni‐hyperaccumulating species Odontarrhena lesbiaca in driving these patterns. Intraspecific variation explained by soil Ni content is smaller than 4%, and most of the variance is explained by interspecific differences in trait values. Most species do not show significant changes in trait values in response to soil Ni. At the community level, low specific leaf areas, small and thick leaves are selected on high Ni soils. Functional diversity analyses suggest a shift towards a stress tolerance syndrome (thick and small leaves with low SLA values) and an increase in functional diversity on Ni‐rich soils. However, these patterns are driven by the increasing abundance of O. lesbiaca. The endemic Ni hyperaccumulator has a stress tolerance strategy with small thick leaves and low SLA, while the community of broadly distributed species show an increase in trait values related to dominance and fast growth. Synthesis. Intraspecific variation in leaf trait responds little to soil metal toxicity. Endemic species harbour unique trait values compared to species with broad distribution which should justify their conservation as a priority.
蛇纹石生态系统具有多重环境压力:镍(Ni)等痕量金属含量高、常量营养元素供应少和保水能力低。这些恶劣的环境条件对植被产生了强烈的选择性影响,但它们对群落组合过程和功能性状组成的影响仍然未知。我们在希腊莱斯沃斯岛四个蛇纹石地点的 26 个地块中,测量了 20 种最丰富植物的六种与资源获取和抗逆性相关的叶片功能性状。我们量化了种间和种内性状差异所解释的变异比例,并测试了单个物种的性状值是否因土壤镍含量而发生变化。我们采用混合模型方法和功能多样性分析,研究了每个性状在自然土壤镍梯度上的适应价值和群落水平变化。我们检验了丰富的蛇纹石特有物种和镍高积累物种 Odontarrhena lesbiaca 在驱动这些模式中的作用。由土壤镍含量解释的种内变异小于 4%,大部分变异由性状值的种间差异解释。大多数物种的性状值对土壤镍的反应没有明显变化。在群落水平上,高 Ni 土壤选择了低比叶面积、小叶片和厚叶片。功能多样性分析表明,在富含镍的土壤上,植物向抗逆综合征(叶片厚而小,SLA 值低)转变,功能多样性增加。然而,这些模式是由 O. lesbiaca 数量的增加所驱动的。特有的镍高积累植物具有小而厚的叶片和低 SLA 值的胁迫耐受策略,而广泛分布的物种群落则显示出与优势和快速生长相关的性状值的增加。综述。叶片性状的种内变异对土壤金属毒性的反应很小。与分布广泛的物种相比,特有物种具有独特的性状值,因此应优先保护这些物种。
{"title":"Interspecific trait differences drive plant community responses on serpentine soils","authors":"Guillaume Delhaye, Panayiotis G. Dimitrakopoulos, George C. Adamidis","doi":"10.1111/1365-2745.14429","DOIUrl":"https://doi.org/10.1111/1365-2745.14429","url":null,"abstract":"<jats:list> <jats:list-item>Serpentine ecosystems are characterised by multiple environmental stressors: high levels of trace metals such as nickel (Ni), low availability of macronutrients and low water retention. These harsh environmental conditions exert a strong selective force on the vegetation, but their effect on community assembly processes and the functional trait composition remains unknown.</jats:list-item> <jats:list-item>In 26 plots on four serpentine sites on Lesbos Island (Greece), we measured six leaf functional traits related to resource acquisition and stress resistance on the 20 most abundant plant species. We quantified the proportion of variance explained by inter‐ and intraspecific trait differences and tested if individual species showed changes in trait values explained by soil Ni content. We investigated the adaptive value and the community level changes for each trait along the natural soil Ni gradient using a mixed model approach and functional diversity analyses. We tested the role of the abundant serpentine endemic and Ni‐hyperaccumulating species <jats:italic>Odontarrhena lesbiaca</jats:italic> in driving these patterns.</jats:list-item> <jats:list-item>Intraspecific variation explained by soil Ni content is smaller than 4%, and most of the variance is explained by interspecific differences in trait values. Most species do not show significant changes in trait values in response to soil Ni. At the community level, low specific leaf areas, small and thick leaves are selected on high Ni soils. Functional diversity analyses suggest a shift towards a stress tolerance syndrome (thick and small leaves with low SLA values) and an increase in functional diversity on Ni‐rich soils. However, these patterns are driven by the increasing abundance of <jats:italic>O. lesbiaca</jats:italic>.</jats:list-item> <jats:list-item>The endemic Ni hyperaccumulator has a stress tolerance strategy with small thick leaves and low SLA, while the community of broadly distributed species show an increase in trait values related to dominance and fast growth.</jats:list-item> <jats:list-item><jats:italic>Synthesis</jats:italic>. Intraspecific variation in leaf trait responds little to soil metal toxicity. Endemic species harbour unique trait values compared to species with broad distribution which should justify their conservation as a priority.</jats:list-item> </jats:list>","PeriodicalId":191,"journal":{"name":"Journal of Ecology","volume":"28 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142566044","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spatial and climatic drivers of β‐diversity in assemblages of angiosperm genera across the world 全球被子植物种属集合的 β 多样性的空间和气候驱动因素
IF 5.5 1区 环境科学与生态学 Q1 ECOLOGY Pub Date : 2024-10-30 DOI: 10.1111/1365-2745.14428
Hong Qian, Shenhua Qian, Michael Kessler
β‐diversity quantifies the change in taxonomic and phylogenetic composition between areas. It can be partitioned into two additive components (turnover and nestedness). Geographic distance, which reflects dispersal limitation, and climatic distance, which reflects environmental filtering, are major drivers of β‐diversity, but few studies have assessed their relative importance to β‐diversity at a global scale. Here, we investigate the relationship of β‐diversity of angiosperm genera in regional floras worldwide to climatic conditions within regions and to geographic and climatic distances between regions. We found that (1) current climate has a stronger effect on phylogenetic turnover than does Quaternary climate change; (2) of the current climate variables examined, mean annual temperature is the strongest driver of phylogenetic turnover, followed by precipitation seasonality; (3) regions with high precipitation seasonality have high phylogenetic β‐diversity and phylogenetic turnover; and (4) at a global scale, the variation in phylogenetic turnover explained jointly by geographic and climatic distances is, on average, much larger than that explained uniquely by either distance, but that geographic distance explains more variation in phylogenetic turnover than climatic distance. Synthesis. These results reveal the synergistic role of geographic isolation and climatic filtering in determining the composition of floras worldwide, with less influence of Quaternary climate changes.
β 多样性量化了不同地区之间分类和系统发育组成的变化。它可分为两个相加成分(周转率和嵌套度)。地理距离(反映散布限制)和气候距离(反映环境过滤)是β多样性的主要驱动因素,但很少有研究评估它们在全球范围内对β多样性的相对重要性。在此,我们研究了全球区域植物区系中被子植物属的β多样性与区域内气候条件以及区域间地理和气候距离的关系。我们发现:(1) 与第四纪气候变化相比,当前气候对系统发育更替的影响更大;(2) 在所研究的当前气候变量中,年平均气温是系统发育更替的最强驱动因素,其次是降水季节性;(3) 降水季节性强的地区具有较高的系统发育β多样性和系统发育更替;(4) 在全球范围内,由地理距离和气候距离共同解释的系统发育更替的变异平均远大于由其中任何一个距离单独解释的变异,但地理距离比气候距离更能解释系统发育更替的变异。综述。这些结果揭示了地理隔离和气候过滤在决定全球植物组成方面的协同作用,而第四纪气候变化的影响较小。
{"title":"Spatial and climatic drivers of β‐diversity in assemblages of angiosperm genera across the world","authors":"Hong Qian, Shenhua Qian, Michael Kessler","doi":"10.1111/1365-2745.14428","DOIUrl":"https://doi.org/10.1111/1365-2745.14428","url":null,"abstract":"<jats:list> <jats:list-item>β‐diversity quantifies the change in taxonomic and phylogenetic composition between areas. It can be partitioned into two additive components (turnover and nestedness). Geographic distance, which reflects dispersal limitation, and climatic distance, which reflects environmental filtering, are major drivers of β‐diversity, but few studies have assessed their relative importance to β‐diversity at a global scale.</jats:list-item> <jats:list-item>Here, we investigate the relationship of β‐diversity of angiosperm genera in regional floras worldwide to climatic conditions within regions and to geographic and climatic distances between regions.</jats:list-item> <jats:list-item>We found that (1) current climate has a stronger effect on phylogenetic turnover than does Quaternary climate change; (2) of the current climate variables examined, mean annual temperature is the strongest driver of phylogenetic turnover, followed by precipitation seasonality; (3) regions with high precipitation seasonality have high phylogenetic β‐diversity and phylogenetic turnover; and (4) at a global scale, the variation in phylogenetic turnover explained jointly by geographic and climatic distances is, on average, much larger than that explained uniquely by either distance, but that geographic distance explains more variation in phylogenetic turnover than climatic distance.</jats:list-item> <jats:list-item><jats:italic>Synthesis</jats:italic>. These results reveal the synergistic role of geographic isolation and climatic filtering in determining the composition of floras worldwide, with less influence of Quaternary climate changes.</jats:list-item> </jats:list>","PeriodicalId":191,"journal":{"name":"Journal of Ecology","volume":"3 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142555778","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Plant responses to urban gradients: Extinction, plasticity, adaptation 植物对城市梯度的反应:灭绝、可塑性、适应性
IF 5.5 1区 环境科学与生态学 Q1 ECOLOGY Pub Date : 2024-10-30 DOI: 10.1111/1365-2745.14427
Alejandro Sotillo, Laurent Hardion, Etienne Chanez, Kenji Fujiki, Audrey Muratet
Biodiversity‐oriented urban management and planning require information on the drivers of wildlife composition and ecosystem function within cities. Urban landscapes impose environmental gradients along which species may be filtered away, or respond by showing adaptive variation in functional trait values. Such trait variation may in turn be due to a species' phenotypic plasticity, or a consequence of microevolution leading to local adaptation. This study investigates three possible plant responses to urban environmental gradients, with different evolutionary consequences: extinction, plasticity and adaptation. We assessed whether individual functional traits (LMA—leaf mass per area, plant height and flower length), population performance traits (seed mass and germination rate), as well as species frequency in the plant community, responded to gradients in mowing frequency, soil fertility and structure, temperature and surrounding mean building height, among four herbaceous plant species present in the metropolitan area of Strasbourg. Using a common garden experiment, we tested whether the observed trait variation was hereditary, and may thus constitute evidence for local adaptation. Our results detected the three types of expected responses. Plantago lanceolata is plastic to urban gradients, and Trifolium pratense showed both plastic and hereditary responses. Dactylis glomerata and Medicago lupulina showed all three responses: they both declined under increasing mowing frequency, were plastic to surrounding mean building height, and showed hereditary responses to different urban gradients. Urban management and planning therefore impact on the evolutionary capabilities of plants in cities. In the case of management this is highlighted by the detected trends in species' traits and frequency in response to mowing. The consequences of urban planning are evidenced by mean building height eliciting most often plastic and adaptive responses. Synthesis. Herbaceous plants often change their morphology in response to urban conditions: grass cutting, altered soils, warmer temperatures and being surrounded by tightly packed buildings. These changes are sometimes hereditary, which suggests that city management and planning affect the ability of plants to survive and evolve in urban environments.
以生物多样性为导向的城市管理和规划需要了解城市中野生动物组成和生态系统功能的驱动因素。城市景观造成了环境梯度,沿此梯度,物种可能会被过滤掉,或通过在功能特征值上表现出适应性变异来做出反应。这种性状变化可能是由于物种的表型可塑性,也可能是微进化导致局部适应的结果。本研究调查了植物对城市环境梯度的三种可能反应,它们会带来不同的进化后果:灭绝、可塑性和适应性。我们评估了斯特拉斯堡大都会地区四种草本植物的个体功能特征(单位面积叶片质量、株高和花长)、种群表现特征(种子质量和发芽率)以及物种在植物群落中的出现频率是否会对割草频率、土壤肥力和结构、温度以及周围平均建筑物高度的梯度产生反应。通过一个普通花园实验,我们检验了所观察到的性状变异是否具有遗传性,从而是否构成了当地适应性的证据。我们的结果发现了三种预期反应。车前草(Plantago lanceolata)对城市梯度具有可塑性,而马齿苋(Trifolium pratense)则同时表现出可塑性和遗传性反应。Dactylis glomerata和Medicago lupulina表现出所有三种反应:它们都在除草频率增加的情况下衰退,对周围平均建筑高度具有可塑性,并对不同的城市梯度表现出遗传性反应。因此,城市管理和规划会影响城市植物的进化能力。在管理方面,通过检测物种性状和频率对除草的反应趋势,可以突出说明这一点。城市规划的后果体现在平均建筑高度通常会引起可塑性和适应性反应。综述。草本植物经常会因城市条件而改变形态:割草、土壤改变、温度升高以及被密集的建筑物包围。这些变化有时是遗传性的,这表明城市管理和规划会影响植物在城市环境中的生存和进化能力。
{"title":"Plant responses to urban gradients: Extinction, plasticity, adaptation","authors":"Alejandro Sotillo, Laurent Hardion, Etienne Chanez, Kenji Fujiki, Audrey Muratet","doi":"10.1111/1365-2745.14427","DOIUrl":"https://doi.org/10.1111/1365-2745.14427","url":null,"abstract":"<jats:list> <jats:list-item>Biodiversity‐oriented urban management and planning require information on the drivers of wildlife composition and ecosystem function within cities. Urban landscapes impose environmental gradients along which species may be filtered away, or respond by showing adaptive variation in functional trait values. Such trait variation may in turn be due to a species' phenotypic plasticity, or a consequence of microevolution leading to local adaptation.</jats:list-item> <jats:list-item>This study investigates three possible plant responses to urban environmental gradients, with different evolutionary consequences: extinction, plasticity and adaptation. We assessed whether individual functional traits (LMA—leaf mass per area, plant height and flower length), population performance traits (seed mass and germination rate), as well as species frequency in the plant community, responded to gradients in mowing frequency, soil fertility and structure, temperature and surrounding mean building height, among four herbaceous plant species present in the metropolitan area of Strasbourg. Using a common garden experiment, we tested whether the observed trait variation was hereditary, and may thus constitute evidence for local adaptation.</jats:list-item> <jats:list-item>Our results detected the three types of expected responses. <jats:italic>Plantago lanceolata</jats:italic> is plastic to urban gradients, and <jats:italic>Trifolium pratense</jats:italic> showed both plastic and hereditary responses. <jats:italic>Dactylis glomerata</jats:italic> and <jats:italic>Medicago lupulina</jats:italic> showed all three responses: they both declined under increasing mowing frequency, were plastic to surrounding mean building height, and showed hereditary responses to different urban gradients.</jats:list-item> <jats:list-item>Urban management and planning therefore impact on the evolutionary capabilities of plants in cities. In the case of management this is highlighted by the detected trends in species' traits and frequency in response to mowing. The consequences of urban planning are evidenced by mean building height eliciting most often plastic and adaptive responses.</jats:list-item> <jats:list-item><jats:italic>Synthesis</jats:italic>. Herbaceous plants often change their morphology in response to urban conditions: grass cutting, altered soils, warmer temperatures and being surrounded by tightly packed buildings. These changes are sometimes hereditary, which suggests that city management and planning affect the ability of plants to survive and evolve in urban environments.</jats:list-item> </jats:list>","PeriodicalId":191,"journal":{"name":"Journal of Ecology","volume":"24 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142555843","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Ecology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1