首页 > 最新文献

Journal of Ecology最新文献

英文 中文
Drought reduces rhizosphere microbial network complexity and nutrient cycling dynamics mediated by root exudates 干旱降低了根际微生物网络的复杂性和根分泌物介导的养分循环动力学
IF 5.5 1区 环境科学与生态学 Q1 ECOLOGY Pub Date : 2025-12-16 DOI: 10.1111/1365-2745.70213
Lirong Liao, Feike A. Dijkstra, Jie Wang, Lu Zhang, Shilong Lei, Guobin Liu, Chao Zhang
<jats:list> <jats:list-item> Despite extensive studies on the taxonomic diversity and metabolic capacity of microbiomes in response to drought, drought effects on the soil microbial co‐occurrence networks and their function roles are less understood. This is partly due to the distinct microbial composition and activities in the rhizosphere compared to bulk soil. </jats:list-item> <jats:list-item> Here, we conducted a 2‐year controlled watering experiment to examine the effects of drought on the network structure and functions of soil microbiomes in both the rhizosphere and bulk soil of the native grass <jats:italic>Bothriochloa ischaemum</jats:italic> . We evaluated the secretion rate and composition of root exudates linked to microbial variation under three different watering regimes: well‐watered (80% field capacity), moderate drought (60% field capacity) and severe drought (40% field capacity). Microbial community composition was analysed using amplicon sequencing, and functional gene abundance was quantified via qPCR. </jats:list-item> <jats:list-item> We found that, compared to the weak response of the microbial community in the bulk soil, drought markedly reduced the diversity of bacteria, fungi and protists, their network complexity (e.g. nodes and edges numbers, average degree, modularity and clustering coefficient), and the abundance of genes related to C degradation ( <jats:italic>sga</jats:italic> , <jats:italic>amyX</jats:italic> , <jats:italic>abfA</jats:italic> , <jats:italic>and xlyA</jats:italic> ), N fixation ( <jats:italic>nifH</jats:italic> ), ammonification ( <jats:italic>ureC</jats:italic> ), denitrification ( <jats:italic>nirK</jats:italic> and <jats:italic>nirS</jats:italic> ), and assimilatory ( <jats:italic>nasA</jats:italic> ) and dissimilatory ( <jats:italic>napA</jats:italic> ) N reduction in the rhizosphere. The reduction in microbial network complexity and reduced C‐ and N transformation genes were highly correlated with the drought‐induced decline in root C exudation and changes in the component diversity of exudate components, including amino acids, lipids, organic acids, vitamins, cofactors and carbohydrates. Among the root exudates, organic acids played a crucial role in shaping microbial occurrence networks, while amino acids were essential in regulating functional genes involved in C and N cycling. </jats:list-item> <jats:list-item> <jats:italic>Synthesis</jats:italic> . Our results suggest that drought reduced microbial diversity, co‐occurrence network complexity and key C and N cycling gene abundances, with root exudates such as organic acids and amino acids being crucial in shaping these responses. These findings deepen our understanding of plant–microbe interactions under drought stress and underscore the essential role of root exudates in mediating microbial structure and functions amid escalating climate change. Such drought‐induced disruptions in microbial networks and functional gene expression may cons
尽管对干旱环境下微生物群的分类多样性和代谢能力进行了广泛的研究,但干旱对土壤微生物共现网络的影响及其功能作用尚不清楚。这部分是由于与散装土壤相比,根际微生物组成和活动不同。本研究通过2年的对照浇水试验,研究了干旱对土草根际和块土中土壤微生物群网络结构和功能的影响。我们评估了三种不同的灌溉制度下根系分泌物的分泌率和组成与微生物变化的关系:充足水分(80%田间容量)、中度干旱(60%田间容量)和严重干旱(40%田间容量)。利用扩增子测序分析微生物群落组成,利用qPCR定量分析功能基因丰度。研究发现,与土壤微生物群落的弱响应相比,干旱显著降低了细菌、真菌和原生生物的多样性,降低了它们的网络复杂性(如节点和边数、平均度、模块化和聚类系数),降低了C降解(sga、amyX、abfA和xlyA)、固氮(nifH)、氨化(ureC)、反硝化(nirK和nirS)相关基因的丰度。以及根际同化(nasA)和异化(napA)氮的减少。微生物网络复杂性的降低以及C -和N转化基因的减少与干旱引起的根系C分泌减少以及分泌成分(包括氨基酸、脂类、有机酸、维生素、辅助因子和碳水化合物)多样性的变化高度相关。在根系分泌物中,有机酸在形成微生物发生网络中起关键作用,而氨基酸在调节涉及C和N循环的功能基因中起重要作用。合成。我们的研究结果表明,干旱降低了微生物多样性、共生网络复杂性和关键的C和N循环基因丰度,而根部分泌物如有机酸和氨基酸在形成这些反应中起着至关重要的作用。这些发现加深了我们对干旱胁迫下植物与微生物相互作用的理解,并强调了在气候变化不断加剧的情况下,根系分泌物在调节微生物结构和功能方面的重要作用。这种干旱导致的微生物网络和功能基因表达的中断可能会限制微生物驱动的养分周转,并损害土壤生态系统对未来极端气候的适应能力。
{"title":"Drought reduces rhizosphere microbial network complexity and nutrient cycling dynamics mediated by root exudates","authors":"Lirong Liao, Feike A. Dijkstra, Jie Wang, Lu Zhang, Shilong Lei, Guobin Liu, Chao Zhang","doi":"10.1111/1365-2745.70213","DOIUrl":"https://doi.org/10.1111/1365-2745.70213","url":null,"abstract":"&lt;jats:list&gt; &lt;jats:list-item&gt; Despite extensive studies on the taxonomic diversity and metabolic capacity of microbiomes in response to drought, drought effects on the soil microbial co‐occurrence networks and their function roles are less understood. This is partly due to the distinct microbial composition and activities in the rhizosphere compared to bulk soil. &lt;/jats:list-item&gt; &lt;jats:list-item&gt; Here, we conducted a 2‐year controlled watering experiment to examine the effects of drought on the network structure and functions of soil microbiomes in both the rhizosphere and bulk soil of the native grass &lt;jats:italic&gt;Bothriochloa ischaemum&lt;/jats:italic&gt; . We evaluated the secretion rate and composition of root exudates linked to microbial variation under three different watering regimes: well‐watered (80% field capacity), moderate drought (60% field capacity) and severe drought (40% field capacity). Microbial community composition was analysed using amplicon sequencing, and functional gene abundance was quantified via qPCR. &lt;/jats:list-item&gt; &lt;jats:list-item&gt; We found that, compared to the weak response of the microbial community in the bulk soil, drought markedly reduced the diversity of bacteria, fungi and protists, their network complexity (e.g. nodes and edges numbers, average degree, modularity and clustering coefficient), and the abundance of genes related to C degradation ( &lt;jats:italic&gt;sga&lt;/jats:italic&gt; , &lt;jats:italic&gt;amyX&lt;/jats:italic&gt; , &lt;jats:italic&gt;abfA&lt;/jats:italic&gt; , &lt;jats:italic&gt;and xlyA&lt;/jats:italic&gt; ), N fixation ( &lt;jats:italic&gt;nifH&lt;/jats:italic&gt; ), ammonification ( &lt;jats:italic&gt;ureC&lt;/jats:italic&gt; ), denitrification ( &lt;jats:italic&gt;nirK&lt;/jats:italic&gt; and &lt;jats:italic&gt;nirS&lt;/jats:italic&gt; ), and assimilatory ( &lt;jats:italic&gt;nasA&lt;/jats:italic&gt; ) and dissimilatory ( &lt;jats:italic&gt;napA&lt;/jats:italic&gt; ) N reduction in the rhizosphere. The reduction in microbial network complexity and reduced C‐ and N transformation genes were highly correlated with the drought‐induced decline in root C exudation and changes in the component diversity of exudate components, including amino acids, lipids, organic acids, vitamins, cofactors and carbohydrates. Among the root exudates, organic acids played a crucial role in shaping microbial occurrence networks, while amino acids were essential in regulating functional genes involved in C and N cycling. &lt;/jats:list-item&gt; &lt;jats:list-item&gt; &lt;jats:italic&gt;Synthesis&lt;/jats:italic&gt; . Our results suggest that drought reduced microbial diversity, co‐occurrence network complexity and key C and N cycling gene abundances, with root exudates such as organic acids and amino acids being crucial in shaping these responses. These findings deepen our understanding of plant–microbe interactions under drought stress and underscore the essential role of root exudates in mediating microbial structure and functions amid escalating climate change. Such drought‐induced disruptions in microbial networks and functional gene expression may cons","PeriodicalId":191,"journal":{"name":"Journal of Ecology","volume":"118 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2025-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145760072","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stepwise shift in root phosphorus‐acquisition strategies with nitrogen input in temperate forests 温带森林根系磷获取策略随氮输入的逐步变化
IF 5.5 1区 环境科学与生态学 Q1 ECOLOGY Pub Date : 2025-12-16 DOI: 10.1111/1365-2745.70218
Boyuan Bi, Tongtong Xu, Qiong Chen, Zhanqing Hao, Ji Ye, Fei Lin, Zikun Mao, Shuai Fang, Xugao Wang, Zuoqiang Yuan, Hans Lambers
Intensified human‐derived nitrogen (N) loading may induce extensive phosphorus (P) uptake limitations in temperate forests. It remains unclear how plants will acclimate to such progressively deprived P environments under N input, especially in terms of adjustments in root P‐acquisition strategies. Here, we show, conducting N input experiments in two temperate forests (natural and secondary forest), that low, medium and high N inputs reduced plant‐available soil P concentrations by 9.3%, 15.7% and 16.3% in natural forests, and by 29.0%, 31.0% and 28.2% in secondary forests, respectively. This suggested that the natural forest had a stronger buffering capacity for N inputs, consequently resulting in a relatively lower impact on soil P availability. Importantly, continuous N input stepwise altered the P‐acquisition strategy of temperate forest plant roots. This transition moved from an initial dependence on mycorrhizal symbiosis for soil P acquisition to the mobilization of soil inorganic P by root‐released carboxylates, and ultimately to the inorganic P acquisition through the facilitation of the mineralization of organic P by rhizosheath phosphatases and by the enhancement of the ability of roots to scavenge the soil matrix. Simultaneously, plant rhizosheath phosphomonoesterase, phosphodiesterase and phytase activities responded divergently to declined soil P availability, suggesting that increased N inputs altered plant mineralization preference and strategy for soil organic P with different chemical forms. Synthesis . These shifts in root P‐acquisition strategy reveal the adaptive strategies adopted by plants when soil P becomes increasingly limiting, also reflecting the profound effects of N inputs on plant allocation of below‐ground carbon (C) resources. Together, this study elucidated that N inputs remodelled C‐P coupling in temperate forests by altering root plasticity and C‐investment strategies.
人类来源的氮(N)负荷加剧可能导致温带森林广泛的磷(P)吸收限制。目前尚不清楚植物将如何适应在N输入下逐渐剥夺P的环境,特别是在根系P获取策略的调整方面。在两种温带森林(天然林和次生林)中进行的氮输入试验表明,低、中、高氮输入使天然林的植物有效土壤磷浓度分别降低了9.3%、15.7%和16.3%,次生林的植物有效土壤磷浓度分别降低了29.0%、31.0%和28.2%。说明天然林对N输入具有较强的缓冲能力,因此对土壤磷有效性的影响相对较小。重要的是,连续的N输入逐步改变了温带森林植物根系的P -获取策略。这种转变从最初依赖菌根共生获取土壤磷,转变为通过根释放的羧酸盐动员土壤无机磷,最终转变为通过根鞘磷酸酶促进有机磷的矿化和根清除土壤基质的能力增强来获取无机磷。同时,植物根鞘磷单酯酶、磷二酯酶和植酸酶活性对土壤磷有效性的响应存在差异,表明氮素投入增加改变了植物对不同化学形态土壤有机磷的矿化偏好和策略。合成。这些根系磷获取策略的变化揭示了植物在土壤磷日益受限时所采取的适应策略,也反映了氮输入对植物分配地下碳资源的深远影响。总之,本研究阐明了氮输入通过改变根系可塑性和碳投资策略来重塑温带森林的碳磷耦合。
{"title":"Stepwise shift in root phosphorus‐acquisition strategies with nitrogen input in temperate forests","authors":"Boyuan Bi, Tongtong Xu, Qiong Chen, Zhanqing Hao, Ji Ye, Fei Lin, Zikun Mao, Shuai Fang, Xugao Wang, Zuoqiang Yuan, Hans Lambers","doi":"10.1111/1365-2745.70218","DOIUrl":"https://doi.org/10.1111/1365-2745.70218","url":null,"abstract":"<jats:list> <jats:list-item> Intensified human‐derived nitrogen (N) loading may induce extensive phosphorus (P) uptake limitations in temperate forests. It remains unclear how plants will acclimate to such progressively deprived P environments under N input, especially in terms of adjustments in root P‐acquisition strategies. </jats:list-item> <jats:list-item> Here, we show, conducting N input experiments in two temperate forests (natural and secondary forest), that low, medium and high N inputs reduced plant‐available soil P concentrations by 9.3%, 15.7% and 16.3% in natural forests, and by 29.0%, 31.0% and 28.2% in secondary forests, respectively. This suggested that the natural forest had a stronger buffering capacity for N inputs, consequently resulting in a relatively lower impact on soil P availability. Importantly, continuous N input stepwise altered the P‐acquisition strategy of temperate forest plant roots. This transition moved from an initial dependence on mycorrhizal symbiosis for soil P acquisition to the mobilization of soil inorganic P by root‐released carboxylates, and ultimately to the inorganic P acquisition through the facilitation of the mineralization of organic P by rhizosheath phosphatases and by the enhancement of the ability of roots to scavenge the soil matrix. Simultaneously, plant rhizosheath phosphomonoesterase, phosphodiesterase and phytase activities responded divergently to declined soil P availability, suggesting that increased N inputs altered plant mineralization preference and strategy for soil organic P with different chemical forms. </jats:list-item> <jats:list-item> <jats:italic>Synthesis</jats:italic> . These shifts in root P‐acquisition strategy reveal the adaptive strategies adopted by plants when soil P becomes increasingly limiting, also reflecting the profound effects of N inputs on plant allocation of below‐ground carbon (C) resources. Together, this study elucidated that N inputs remodelled C‐P coupling in temperate forests by altering root plasticity and C‐investment strategies. </jats:list-item> </jats:list>","PeriodicalId":191,"journal":{"name":"Journal of Ecology","volume":"68 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2025-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145760071","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Plant species with ‘fast’ traits are winners in young and high-diversity plant communities 具有“快”性状的植物物种在年轻和高多样性的植物群落中是赢家
IF 5.5 1区 环境科学与生态学 Q1 ECOLOGY Pub Date : 2025-12-14 DOI: 10.1111/1365-2745.70216
Christiane Roscher, Yanhao Feng, Nico Eisenhauer
<h2>1 INTRODUCTION</h2><p>During the last decades, many experimental studies have shown positive biodiversity–productivity relationships (e.g. Cardinale et al., <span>2012</span>; Tilman et al., <span>2014</span>). Moreover, the few existing long-term biodiversity experiments have demonstrated that positive biodiversity effects become stronger over time, mostly caused by stronger complementarity effects (e.g. Cardinale et al., <span>2007</span>; Reich et al., <span>2012</span>; Wagg et al., <span>2022</span>). The ecological mechanisms explaining this are still under debate, but accumulating evidence indicates that multiple mechanisms drive the long-term positive biodiversity effects on ecosystem functioning (Eisenhauer et al., <span>2024</span>). Biotic interactions, especially between plant and soil biota, play a crucial role in the strengthening of biodiversity effects (Eisenhauer et al., <span>2012</span>; Thakur et al., <span>2021</span>; van der Putten et al., <span>2013</span>). Increasing productivity of high-diversity communities is thought to be generated by the accumulation of plant-growth facilitators, for example by mycorrhizal fungi or biocontrol bacteria causing positive plant–soil feedbacks (PSF), or the dilution of specific pathogens (Eisenhauer et al., <span>2012</span>). Further processes involve enhanced resource-use complementarity through community assembly (Reich et al., <span>2012</span>; Roscher et al., <span>2013</span>) and micro-evolutionary processes increasing niche differentiation (de Giorgi et al., <span>2025</span>; Zuppinger-Dingley et al., <span>2014</span>). Moreover, decreasing productivity of low-diversity communities has been associated with the density-dependent accumulation of specific plant antagonists creating negative PSF, lower diversity and activity of beneficial interactions partners across trophic levels and imbalanced use of resources (Kulmatiski et al., <span>2012</span>; Mommer et al., <span>2018</span>).</p><p>In order to better understand the strengthening diversity effects on plant community productivity, it is key to study the productivity responses of individual species to diversity. Various studies have shown that different plant species have the full variety of possible productivity responses to diversity: negative, neutral or positive (e.g. Hille Ris Lambers et al., <span>2004</span>; Marquard et al., <span>2009</span>; Roscher et al., <span>2007</span>; Thein et al., <span>2008</span>; van Ruijven & Berendse, <span>2005</span>). In communities, plant species experience competition with neighbouring plants, interact with organisms of other trophic levels and are exposed to different abiotic and biotic environments, and this should underpin the varying responses of different species to diversity and thus diversity effects. However, the relative importance of competition vs. PSF, and especially how it changes with increasing plant diversity is poorly understood (Lekberg et al., <span>
在过去的几十年里,许多实验研究显示了生物多样性与生产力之间的积极关系(例如Cardinale等人,2012;Tilman等人,2014)。此外,现有的少数长期生物多样性实验表明,随着时间的推移,积极的生物多样性效应变得更强,主要是由于更强的互补效应(如Cardinale et al., 2007; Reich et al., 2012; Wagg et al., 2022)。解释这一现象的生态机制仍在争论中,但越来越多的证据表明,多种机制推动了生物多样性对生态系统功能的长期积极影响(Eisenhauer et al., 2024)。生物相互作用,特别是植物与土壤生物群之间的相互作用,在加强生物多样性效应中起着至关重要的作用(Eisenhauer et al., 2012; Thakur et al., 2021; van der Putten et al., 2013)。高多样性群落生产力的提高被认为是由植物生长促进剂的积累产生的,例如菌根真菌或生物防治细菌引起的植物-土壤正反馈(PSF),或特定病原体的稀释(Eisenhauer et al., 2012)。进一步的过程包括通过群落聚集增强资源利用的互补(Reich et al., 2012; Roscher et al., 2013)和微进化过程增加生态位分化(de Giorgi et al., 2025; Zuppinger-Dingley et al., 2014)。此外,低多样性群落的生产力下降与特定植物拮抗剂的密度依赖性积累有关,这些拮抗剂会产生负PSF,降低营养水平上有益相互作用伙伴的多样性和活性,以及资源利用不平衡(Kulmatiski等人,2012;Mommer等人,2018)。为了更好地理解多样性对植物群落生产力的增强效应,研究单个物种对多样性的生产力响应是关键。各种研究表明,不同的植物物种对多样性有各种可能的生产力响应:负的、中性的或正的(例如,Hille Ris Lambers等人,2004;Marquard等人,2009;Roscher等人,2007;Thein等人,2008;van Ruijven & Berendse, 2005)。在群落中,植物物种经历与邻近植物的竞争,与其他营养水平的生物相互作用,并暴露于不同的非生物和生物环境中,这应该是不同物种对多样性的不同反应和多样性效应的基础。然而,竞争与PSF的相对重要性,特别是它如何随着植物多样性的增加而变化,人们知之甚少(Lekberg等人,2018;Reinhart等人,2021)。对于作为解释生物多样性效应随着时间的推移而增强的各种机制的复杂性如何改变单个物种的表现,我们所知的就更少了。此外,尚不清楚是否以及哪些植物性状控制了这些过程。从概念上讲,有人提出植物对PSF的差异反应应该与快慢性状谱有关(Reich, 2014),它描述了在投资促进快速生长的性状或投资防御拮抗剂的性状之间的权衡(Xi et al., 2021)。在地面上,叶片经济谱的特征(Wright et al., 2004),如较高的叶片氮浓度(NLeaf)和更大的比叶面积(SLA),表明养分的快速生长和快速周转,但对天敌的防御能力较低。因此,具有“快”性状综合征的物种应该比具有“慢”性状综合征的物种经历更多的个体负PSF。事实上,最近的一项荟萃分析表明,速生植物物种的PSF更负,支持生长-防御权衡假说(Xi et al., 2021)。然而,非生物和生物环境因素(如光、养分、土壤湿度、天敌)也可能改变植物-土壤生物群的相互作用;也就是说,PSF的强度甚至方向可能取决于环境背景(Bennett & Klironomos, 2019; Smith-Ramesh & Reynolds, 2017)。众所周知,植物多样性的增加会改变单个植物物种所经历的生长环境,但这是否会影响具有快和慢性状的物种对植物多样性增加的不同反应,在生物多样性实验中很少得到验证。最近,Zheng等(2024)在各种草地生物多样性实验中发现,随着时间的推移,生物多样性效应的增强主要是由于资源保守型物种的超产出量增加,而资源获取型物种的超产出量或减少或增加。 由于草原群落建立后可能需要数年时间,生物多样性积极效应背后的各种机制才能充分发挥作用,因此尚不清楚物种层面对植物多样性的响应是否会受到实验历史(即植物群落的年龄)的影响,这可能与实验年份的特定环境条件相混淆(Vogel et al., 2019)。因此,我们在长期生物多样性实验的14年植物群落(耶拿实验,Roscher et al., 2004)中建立了2016年在新土壤和新种子(=无历史)上播种的具有匹配物种组成的“新群落”亚样地,并将其与2002年播种的“旧群落”亚样地(=有历史)进行比较(ΔBEF实验,Vogel et al., 2019)。我们利用耶拿实验中66种植物混合物(2、4、8、16和60种)的植物生物量的时间序列数据,将每种混合物的居住(=播种)物种分为特定地块的“赢家”(高产、高产物种)和“输家”(低产量、低产物种)(图1a)。由于尚不清楚PSF的强度和方向如何随植物生命阶段变化(Kardol et al., 2013),我们还使用了植物计方法,将预生长的幼苗种植到有和没有历史的群落中。从每个特定的地块中选择两个“赢家”和两个“输家”物种作为每种混合物的植物计,以解释相同的物种在某些地块中可能是“赢家”而在其他地块中可能是“输家”(图1b)。此外,我们在所有60个实验物种的“旧”和“新”单一栽培中安装了植物计。我们检验了以下假设:在混合中,可通过与快-慢叶经济谱相关的关键性状来区分住居种中的赢家和输家。具有“快”性状的物种在高多样性混合物中是赢家,而具有“慢”性状的物种在低多样性混合物中是赢家,特别是在历史较长,即植物群落年龄增加的情况下。群落历史影响植物性能。我们预计,在低多样性下,有历史的旧群落的植物计性能低于没有历史的新群落,而在高多样性下,有历史的群落的植物计性能高于没有历史的群落。与表现优异的物种(=优胜者)相比,表现不佳的物种(=失败者)在低多样性混合物中受到历史的负面影响更多,而在高多样性混合物中从历史的积极影响中获益较少,导致有历史的群落中胜利者和失败者植物计的性能差异大于没有历史的群落。实验设计总结,包括对60种植物及其单一栽培的66种不同物种丰富度的植物混合物(2、4、8、16和60种)进行生物多样性实验的长期数据分析。(a)时间序列数据用于确定特定地块的“赢家”(表现优异、产量过高的物种,用红色表示)和“输家”(表现不佳、产量不足的物种,用蓝色表示)。(b)每种混合物的两个“输家”和两个“赢家”物种作为植物计种植在新土壤上的“新群落”和“旧群落”及其各自的单一栽培的子地块上。植物计测量的性状数据被用来测试胜利者和失败者之间的性状差异。在BioRender中创建。Roscher, C. (2025) https://BioRender.com/umzkvp8。
{"title":"Plant species with ‘fast’ traits are winners in young and high-diversity plant communities","authors":"Christiane Roscher, Yanhao Feng, Nico Eisenhauer","doi":"10.1111/1365-2745.70216","DOIUrl":"https://doi.org/10.1111/1365-2745.70216","url":null,"abstract":"&lt;h2&gt;1 INTRODUCTION&lt;/h2&gt;\u0000&lt;p&gt;During the last decades, many experimental studies have shown positive biodiversity–productivity relationships (e.g. Cardinale et al., &lt;span&gt;2012&lt;/span&gt;; Tilman et al., &lt;span&gt;2014&lt;/span&gt;). Moreover, the few existing long-term biodiversity experiments have demonstrated that positive biodiversity effects become stronger over time, mostly caused by stronger complementarity effects (e.g. Cardinale et al., &lt;span&gt;2007&lt;/span&gt;; Reich et al., &lt;span&gt;2012&lt;/span&gt;; Wagg et al., &lt;span&gt;2022&lt;/span&gt;). The ecological mechanisms explaining this are still under debate, but accumulating evidence indicates that multiple mechanisms drive the long-term positive biodiversity effects on ecosystem functioning (Eisenhauer et al., &lt;span&gt;2024&lt;/span&gt;). Biotic interactions, especially between plant and soil biota, play a crucial role in the strengthening of biodiversity effects (Eisenhauer et al., &lt;span&gt;2012&lt;/span&gt;; Thakur et al., &lt;span&gt;2021&lt;/span&gt;; van der Putten et al., &lt;span&gt;2013&lt;/span&gt;). Increasing productivity of high-diversity communities is thought to be generated by the accumulation of plant-growth facilitators, for example by mycorrhizal fungi or biocontrol bacteria causing positive plant–soil feedbacks (PSF), or the dilution of specific pathogens (Eisenhauer et al., &lt;span&gt;2012&lt;/span&gt;). Further processes involve enhanced resource-use complementarity through community assembly (Reich et al., &lt;span&gt;2012&lt;/span&gt;; Roscher et al., &lt;span&gt;2013&lt;/span&gt;) and micro-evolutionary processes increasing niche differentiation (de Giorgi et al., &lt;span&gt;2025&lt;/span&gt;; Zuppinger-Dingley et al., &lt;span&gt;2014&lt;/span&gt;). Moreover, decreasing productivity of low-diversity communities has been associated with the density-dependent accumulation of specific plant antagonists creating negative PSF, lower diversity and activity of beneficial interactions partners across trophic levels and imbalanced use of resources (Kulmatiski et al., &lt;span&gt;2012&lt;/span&gt;; Mommer et al., &lt;span&gt;2018&lt;/span&gt;).&lt;/p&gt;\u0000&lt;p&gt;In order to better understand the strengthening diversity effects on plant community productivity, it is key to study the productivity responses of individual species to diversity. Various studies have shown that different plant species have the full variety of possible productivity responses to diversity: negative, neutral or positive (e.g. Hille Ris Lambers et al., &lt;span&gt;2004&lt;/span&gt;; Marquard et al., &lt;span&gt;2009&lt;/span&gt;; Roscher et al., &lt;span&gt;2007&lt;/span&gt;; Thein et al., &lt;span&gt;2008&lt;/span&gt;; van Ruijven &amp; Berendse, &lt;span&gt;2005&lt;/span&gt;). In communities, plant species experience competition with neighbouring plants, interact with organisms of other trophic levels and are exposed to different abiotic and biotic environments, and this should underpin the varying responses of different species to diversity and thus diversity effects. However, the relative importance of competition vs. PSF, and especially how it changes with increasing plant diversity is poorly understood (Lekberg et al., &lt;span&gt;","PeriodicalId":191,"journal":{"name":"Journal of Ecology","volume":"29 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2025-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145753147","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Species functional traits affect regional and local dominance across western Amazonian forests 物种功能特征影响了亚马逊西部森林的区域和局部优势
IF 5.5 1区 环境科学与生态学 Q1 ECOLOGY Pub Date : 2025-12-10 DOI: 10.1111/1365-2745.70214
Laura Matas‐Granados, Claire Fortunel, Luis Cayuela, Julia G. de Aledo, Celina Ben Saadi, Nathan J. B. Kraft, Christopher Baraloto, S. Joseph Wright, Jason Vleminckx, Nancy C. Garwood, Peter Hietz, Margaret R. Metz, Frederick C. Draper, Timothy R. Baker, Oliver L. Phillips, Eurídice N. Honorio Coronado, Kalle Ruokolainen, Roosevelt García‐Villacorta, Katherine H. Roucoux, Maximilien Guèze, Elvis Valderrama Sandoval, Paul V. A. Fine, Carlos A. Amasifuen Guerra, Ricardo Zarate Gomez, Pablo R. Stevenson, Abel Monteagudo‐Mendoza, Rodolfo Vasquez Martinez, John Terborgh, Mathias Disney, Roel Brienen, Percy Núñez Vargas, Jhon del Aguila Pasquel, Yadvinder Malhi, Jacob B. Socolar, Gerardo Flores Llampazo, Jim Vega Arenas, Darcy Galiano Cabrera, Javier Silva Espejo, Joey Talbot, Barbara Vinceti, José Reyna Huaymacari, Cecilia Ballón Falcón, Ted R. Feldpausch, Varun Swamy, Julio M. Grandez Rios, Manuel J. Macía
Several studies have documented dominance by few species in Amazonian forests. Dominant species tend to be either locally abundant (local dominants) or regionally frequent (widespread dominants) but rarely both (oligarchs). Here, we explore relationships between dominance and functional traits. We ask whether: (i) dominance is associated with specific functional profiles and (ii) dominance patterns (local vs. widespread dominants) are associated with different functional traits. We combined census data from 503 forest inventory plots across four lowland forest habitats in western Amazonia with trait information for ~2600 tree species, encompassing data collected in the focal plots and data from published sources. We considered traits that relate to leaf, wood, seed and whole‐plant strategies: specific leaf area (SLA), leaf area (LA), N content per unit leaf mass (LN), wood density (WD), seed mass (SM) and maximum diameter at breast height (DBH max ). Our results reveal that dominant species display different trait combinations depending on the habitat type. Taller dominant species exhibit higher regional frequency, associated with higher dispersal ability and lower local abundance, likely due to negative density dependence. Greater SM contributes to higher regional frequency of dominant species via greater dispersal by birds and mammals and seedling survival. Finally, traits related to resource conservation strategies, such as lower SLA, LA, LN and greater WD, favour higher local densities across most habitats, while the opposite pattern was linked to higher regional frequency. Synthesis . Our findings reveal that (i) dominance is associated with different functional traits depending on the habitat type, and (ii) different functional trait values define distinct dominance patterns. Our study exemplifies the potential of trait‐based approaches to illuminate the ecological mechanisms that may underlie dominance in tropical forests. Finally, accounting for both local abundance and regional frequency when studying dominance is likely to improve our understanding and forecasting of how different species will respond to global change drivers in western Amazonia.
一些研究记录了亚马逊森林中少数物种的优势。优势种要么是本地丰富的(本地优势种),要么是区域频繁的(广泛优势种),但很少两者兼而有之(寡头)。在这里,我们探讨了优势和功能特征之间的关系。我们的问题是:(i)优势是否与特定的功能特征有关;(ii)优势模式(局部优势与广泛优势)是否与不同的功能特征有关。我们将亚马逊西部4个低地森林栖息地的503个森林清查样地的普查数据与约2600种树种的性状信息结合起来,包括重点样地收集的数据和已发表的数据。我们考虑了与叶片、木材、种子和整株策略相关的性状:比叶面积(SLA)、叶面积(LA)、单位叶质量含氮量(LN)、木材密度(WD)、种子质量(SM)和胸径最大(DBH max)。结果表明,不同生境类型的优势种表现出不同的性状组合。较高的优势种表现出较高的区域频率,与较高的扩散能力和较低的局部丰度相关,可能是由于负密度依赖关系。较高的SM通过鸟类和哺乳动物的传播和幼苗存活率提高了优势种的区域频率。最后,与资源保护策略相关的特征,如较低的SLA、LA、LN和较大的WD,在大多数生境中有利于较高的局部密度,而相反的模式与较高的区域频率有关。合成。结果表明:(1)不同生境类型的优势度与不同功能性状相关;(2)不同功能性状值定义不同的优势度模式。我们的研究举例说明了基于性状的方法在阐明热带森林优势的生态机制方面的潜力。最后,在研究优势度时,考虑本地丰度和区域频率可能会提高我们对亚马逊西部不同物种如何响应全球变化驱动因素的理解和预测。
{"title":"Species functional traits affect regional and local dominance across western Amazonian forests","authors":"Laura Matas‐Granados, Claire Fortunel, Luis Cayuela, Julia G. de Aledo, Celina Ben Saadi, Nathan J. B. Kraft, Christopher Baraloto, S. Joseph Wright, Jason Vleminckx, Nancy C. Garwood, Peter Hietz, Margaret R. Metz, Frederick C. Draper, Timothy R. Baker, Oliver L. Phillips, Eurídice N. Honorio Coronado, Kalle Ruokolainen, Roosevelt García‐Villacorta, Katherine H. Roucoux, Maximilien Guèze, Elvis Valderrama Sandoval, Paul V. A. Fine, Carlos A. Amasifuen Guerra, Ricardo Zarate Gomez, Pablo R. Stevenson, Abel Monteagudo‐Mendoza, Rodolfo Vasquez Martinez, John Terborgh, Mathias Disney, Roel Brienen, Percy Núñez Vargas, Jhon del Aguila Pasquel, Yadvinder Malhi, Jacob B. Socolar, Gerardo Flores Llampazo, Jim Vega Arenas, Darcy Galiano Cabrera, Javier Silva Espejo, Joey Talbot, Barbara Vinceti, José Reyna Huaymacari, Cecilia Ballón Falcón, Ted R. Feldpausch, Varun Swamy, Julio M. Grandez Rios, Manuel J. Macía","doi":"10.1111/1365-2745.70214","DOIUrl":"https://doi.org/10.1111/1365-2745.70214","url":null,"abstract":"<jats:list> <jats:list-item> Several studies have documented dominance by few species in Amazonian forests. Dominant species tend to be either locally abundant (local dominants) or regionally frequent (widespread dominants) but rarely both (oligarchs). Here, we explore relationships between dominance and functional traits. We ask whether: (i) dominance is associated with specific functional profiles and (ii) dominance patterns (local vs. widespread dominants) are associated with different functional traits. </jats:list-item> <jats:list-item> We combined census data from 503 forest inventory plots across four lowland forest habitats in western Amazonia with trait information for ~2600 tree species, encompassing data collected in the focal plots and data from published sources. We considered traits that relate to leaf, wood, seed and whole‐plant strategies: specific leaf area (SLA), leaf area (LA), N content per unit leaf mass (LN), wood density (WD), seed mass (SM) and maximum diameter at breast height (DBH <jats:sub>max</jats:sub> ). </jats:list-item> <jats:list-item> Our results reveal that dominant species display different trait combinations depending on the habitat type. Taller dominant species exhibit higher regional frequency, associated with higher dispersal ability and lower local abundance, likely due to negative density dependence. Greater SM contributes to higher regional frequency of dominant species via greater dispersal by birds and mammals and seedling survival. Finally, traits related to resource conservation strategies, such as lower SLA, LA, LN and greater WD, favour higher local densities across most habitats, while the opposite pattern was linked to higher regional frequency. </jats:list-item> <jats:list-item> <jats:italic>Synthesis</jats:italic> . Our findings reveal that (i) dominance is associated with different functional traits depending on the habitat type, and (ii) different functional trait values define distinct dominance patterns. Our study exemplifies the potential of trait‐based approaches to illuminate the ecological mechanisms that may underlie dominance in tropical forests. Finally, accounting for both local abundance and regional frequency when studying dominance is likely to improve our understanding and forecasting of how different species will respond to global change drivers in western Amazonia. </jats:list-item> </jats:list>","PeriodicalId":191,"journal":{"name":"Journal of Ecology","volume":"22 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2025-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145711446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interactions between beneficial fungi and plant silicon: A review 有益真菌与植物硅的相互作用研究进展
IF 5.5 1区 环境科学与生态学 Q1 ECOLOGY Pub Date : 2025-12-08 DOI: 10.1111/1365-2745.70207
Ramalka Heshani Kasige, Ximena Cibils-Stewart, Adam Frew, Scott Nicholas Johnson

CONFLICT OF INTEREST STATEMENT

The authors declare no conflict of interest.

利益冲突声明作者声明无利益冲突。
{"title":"Interactions between beneficial fungi and plant silicon: A review","authors":"Ramalka Heshani Kasige, Ximena Cibils-Stewart, Adam Frew, Scott Nicholas Johnson","doi":"10.1111/1365-2745.70207","DOIUrl":"https://doi.org/10.1111/1365-2745.70207","url":null,"abstract":"<h2> CONFLICT OF INTEREST STATEMENT</h2>\u0000<p>The authors declare no conflict of interest.</p>","PeriodicalId":191,"journal":{"name":"Journal of Ecology","volume":"127 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2025-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145697002","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Leaf nitrogen and wood density, but not root traits, explain the growth and survival of temperate tree species 叶片氮和木材密度,而不是根系特征,解释温带树种的生长和生存
IF 5.5 1区 环境科学与生态学 Q1 ECOLOGY Pub Date : 2025-12-08 DOI: 10.1111/1365-2745.70212
Monique Weemstra, Jenny Zambrano, David Bauman, Claire Fortunel, María Natalia Umaña
<h2>1 INTRODUCTION</h2><p>Across life forms, a trade-off exists between the growth and survival rates of species (Grime, <span>1977</span>; Stearns, <span>1992</span>). This demographic trade-off implies that species allocate resources either to fast growth on productive sites, or to high survival in adverse environments, constraining the suite of adaptive life-history strategies available to organisms (Stearns, <span>1992</span>). It has been found to explain plant species coexistence and biodiversity (Baraloto et al., <span>2005</span>; Kitajima & Poorter, <span>2008</span>; Tilman, <span>2004</span>), succession (Kobe, <span>1999</span>) and community dynamics (Rüger et al., <span>2020</span>; Russo et al., <span>2020</span>). Studies often deduce the underlying principles of these different demographic strategies from interspecific variation in traits, but virtually all of these studies include only above-ground traits (Fan et al., <span>2022</span>; Iida et al., <span>2023</span>; Janse-Ten Klooster et al., <span>2007</span>; Jiang & Jin, <span>2021</span>; Kunstler et al., <span>2016</span>; Martínez-Vilalta et al., <span>2010</span>; Poorter et al., <span>2008</span>; Russo et al., <span>2007</span>; Wright et al., <span>2010</span>; but see Ren et al., <span>2023</span>). Since tree performance depends on the interdependent functioning of above- and below-ground organs, ecological research is in dire need of whole-tree approaches towards grasping growth and survival (Weemstra, Kuyper, et al., <span>2022</span>; Weigelt et al., <span>2021</span>).</p><p>The growth and survival of species is generally associated with variation in traits that reflect plants' capacities to acquire and conserve resources (Fan et al., <span>2022</span>; Iida et al., <span>2023</span>; Janse-Ten Klooster et al., <span>2007</span>; Martínez-Vilalta et al., <span>2010</span>; McMahon et al., <span>2011</span>; Poorter et al., <span>2008</span>; Westoby & Wright, <span>2006</span>). Inherently fast-growing species with acquisitive resource strategies are characterized by leaf and stem traits that promote carbon (C) gain and growth on resource-rich sites (e.g. high specific leaf area [SLA; leaf area per unit leaf dry mass], high leaf nitrogen [N] concentrations and low wood density [WD]). As these traits offer little protection against (a)biotic stressors, they reduce species' survival in low-resource environments (Aerts & Chapin, <span>2000</span>; Grime et al., <span>1997</span>; Poorter & Garnier, <span>2007</span>; Reich et al., <span>1992</span>). In contrast, inherently slow-growing species with a conservative resource strategy are equipped with thick, small and dense leaves and dense wood with high concentrations of secondary compounds. These traits improve drought resistance, mechanical strength and defence against pathogen attack (Ackerly, <span>2004</span>; Chave et al., <span>2009</span>; Hacke et al., <span>2001</span>; Zanne et al.
在所有生命形式中,物种的生长和存活率之间存在着一种权衡(Grime, 1977; Stearns, 1992)。这种人口平衡意味着,物种将资源分配给生产场所的快速生长,或在不利环境下的高存活率,从而限制了生物体可用的适应性生活史策略(Stearns, 1992)。它被发现可以解释植物物种共存和生物多样性(Baraloto et al., 2005; Kitajima & & Poorter, 2008; Tilman, 2004)、演替(Kobe, 1999)和群落动态(r<s:1> ger et al., 2020; Russo et al., 2020)。研究经常从性状的种间变异推断出这些不同人口策略的基本原理,但几乎所有这些研究都只包括地上性状(Fan等人,2022;Iida等人,2023;jansen - ten Klooster等人,2007;Jiang等人;Jin, 2021; Kunstler等人,2016;Martínez-Vilalta等人,2010;Poorter等人,2008;Russo等人,2007;Wright等人,2010;但参见Ren等人,2023)。由于树木的性能取决于地上和地下器官的相互依存功能,生态学研究迫切需要全树方法来掌握生长和生存(Weemstra, Kuyper, et al., 2022; Weigelt et al., 2021)。物种的生长和生存通常与反映植物获取和保存资源能力的性状变异有关(Fan等人,2022;Iida等人,2023;jansen - ten Klooster等人,2007;Martínez-Vilalta等人,2010;McMahon等人,2011;Poorter等人,2008;Westoby等人,2006)。具有获取资源策略的速生物种具有促进碳(C)获取和资源丰富地点生长的叶片和茎性状(如高比叶面积[SLA;单位叶干质量叶面积],高叶氮[N]浓度和低木材密度[WD])。由于这些性状对(a)生物压力源几乎没有保护作用,它们降低了物种在低资源环境中的生存(Aerts & Chapin, 2000; Grime等,1997;Poorter & Garnier, 2007; Reich等,1992)。相比之下,生性生长缓慢且资源策略保守的树种具有厚、小、密的叶片和密集的木材,具有高浓度的次生化合物。这些性状提高了抗旱性、机械强度和对病原体攻击的防御能力(Ackerly, 2004; Chave等人,2009;hack等人,2001;Zanne等人,2010),并提高了树木的存活率,但以牺牲资源获取和生长为代价。虽然这些机制基础已经很好地建立起来,但不同的研究已经确定了各种特征作为人口权衡的最佳预测因素,而且它们的预测能力总体上很低(Chave等人,2009;Iida等人;Swenson, 2020; Paine等人,2015;Poorter等人,2008;Swenson等人,2020;Umaña等人,2023;Yang等人,2018)。从性状对树木生长和存活的一般较弱的可预测性可能部分归因于人口统计学研究中缺乏地下性状。吸收根(以下简称“根”)通过获取必需的土壤资源和对地上和地下拮抗物提供保护,对树木的生长和生存起着重要的作用,但在研究树木生长和生存的研究中很大程度上缺乏。通常预测根系性状与树木性能之间的关系遵循地上观察到的资源获取与保护之间的权衡(Reich, 2014)。例如,与高SLA类似,高比根长(SRL,单位根质量根长)意味着在相对较低的生物量投资下具有较大的根表面积,从而允许有效的土壤资源吸收和快速的树木生长。与高叶氮平行,高根氮有望反映与养分获取相关的快速代谢,促进树木生长(Reich, 2014)。反过来,低SRL和高根组织密度(RTD,根体积根质量)的粗根通常寿命长(McCormack et al., 2012; Weemstra et al., 2016),这被认为有助于长期资源保护,从而有助于树种的抗逆性和生存。然而,这些假设缺乏经验证据的支持,根系性状与树木人口统计学之间的关系也没有得到很好的确立。例如,虽然资源经济学理论将高根直径定义为保守性状,但粗根可能拥有更丰富的(丛枝)菌根真菌(Ma et al., 2018),这可以改善土壤资源获取,从而促进树木生长。此外,在一些研究中,跨物种的高SRL对应于更快的树木生长(Comas et al., 2002; Comas & Eissenstat, 2004; Reich et al., 1998),但在其他研究中没有(McCormack et al., 2012; Weemstra et al.)。 (Comas et al., 2002; Comas & Eissenstat, 2004; McCormack et al., 2012)。此外,很少有研究,研究了根人口统计学特征与树很难比较和一般模式来自因为他们测量幼苗(如昏迷et al ., 2002;帝国et al ., 1998),和/或使用树木生长的间接措施,如模型估计(Weemstra et al ., 2020),或一般物种的分类速度和增长缓慢(昏迷et al ., 2002)(但看到任正非et al ., 2023),而且很少量化树生存(见了et al .(2023))。显然,根系性状在树种人口统计学中的作用在森林生态学中存在很大的知识缺口。本研究采用全树方法评估性状对美国东北部温带树种生长和存活的影响。树种的生长、生存和生活史是其获取、保存和交换地上和地下资源的能力的功能。因此,在研究树木人口统计学时,叶、茎和根共同驱动性能,而不是作为孤立的器官,它们的影响应该被统一考虑。我们的特征人口统计学假设在方法S1中有更详细的解释,并在图S1中可视化;综上所述,我们假设与快速资源吸收相关的性状,即高叶片和根N,高SLA和SRL,导致物种间更高的生长速率。此外,由于低WD在给定的生长量(茎直径)下会导致较低的C投资,因此该性状也与快速生长有关。相反,通过增强对(a)生物胁迫(即根和叶的低氮浓度,低SLA和SRL,高WD)的耐受性来减少资源损失的性状应该会导致更高的存活率。如上所述,我们没有假设或测试根直径对树木生长和存活的直接影响,因为它在资源获取和保护方面可能具有截然不同的作用(方法1)。我们进一步预计,在有利条件下快速生长的物种在不利环境下的存活率较低,这代表了种间的人口统计学权衡,因为假设单个性状对资源吸收和损失的相反影响,从而影响生长和生存。
{"title":"Leaf nitrogen and wood density, but not root traits, explain the growth and survival of temperate tree species","authors":"Monique Weemstra, Jenny Zambrano, David Bauman, Claire Fortunel, María Natalia Umaña","doi":"10.1111/1365-2745.70212","DOIUrl":"https://doi.org/10.1111/1365-2745.70212","url":null,"abstract":"&lt;h2&gt;1 INTRODUCTION&lt;/h2&gt;\u0000&lt;p&gt;Across life forms, a trade-off exists between the growth and survival rates of species (Grime, &lt;span&gt;1977&lt;/span&gt;; Stearns, &lt;span&gt;1992&lt;/span&gt;). This demographic trade-off implies that species allocate resources either to fast growth on productive sites, or to high survival in adverse environments, constraining the suite of adaptive life-history strategies available to organisms (Stearns, &lt;span&gt;1992&lt;/span&gt;). It has been found to explain plant species coexistence and biodiversity (Baraloto et al., &lt;span&gt;2005&lt;/span&gt;; Kitajima &amp; Poorter, &lt;span&gt;2008&lt;/span&gt;; Tilman, &lt;span&gt;2004&lt;/span&gt;), succession (Kobe, &lt;span&gt;1999&lt;/span&gt;) and community dynamics (Rüger et al., &lt;span&gt;2020&lt;/span&gt;; Russo et al., &lt;span&gt;2020&lt;/span&gt;). Studies often deduce the underlying principles of these different demographic strategies from interspecific variation in traits, but virtually all of these studies include only above-ground traits (Fan et al., &lt;span&gt;2022&lt;/span&gt;; Iida et al., &lt;span&gt;2023&lt;/span&gt;; Janse-Ten Klooster et al., &lt;span&gt;2007&lt;/span&gt;; Jiang &amp; Jin, &lt;span&gt;2021&lt;/span&gt;; Kunstler et al., &lt;span&gt;2016&lt;/span&gt;; Martínez-Vilalta et al., &lt;span&gt;2010&lt;/span&gt;; Poorter et al., &lt;span&gt;2008&lt;/span&gt;; Russo et al., &lt;span&gt;2007&lt;/span&gt;; Wright et al., &lt;span&gt;2010&lt;/span&gt;; but see Ren et al., &lt;span&gt;2023&lt;/span&gt;). Since tree performance depends on the interdependent functioning of above- and below-ground organs, ecological research is in dire need of whole-tree approaches towards grasping growth and survival (Weemstra, Kuyper, et al., &lt;span&gt;2022&lt;/span&gt;; Weigelt et al., &lt;span&gt;2021&lt;/span&gt;).&lt;/p&gt;\u0000&lt;p&gt;The growth and survival of species is generally associated with variation in traits that reflect plants' capacities to acquire and conserve resources (Fan et al., &lt;span&gt;2022&lt;/span&gt;; Iida et al., &lt;span&gt;2023&lt;/span&gt;; Janse-Ten Klooster et al., &lt;span&gt;2007&lt;/span&gt;; Martínez-Vilalta et al., &lt;span&gt;2010&lt;/span&gt;; McMahon et al., &lt;span&gt;2011&lt;/span&gt;; Poorter et al., &lt;span&gt;2008&lt;/span&gt;; Westoby &amp; Wright, &lt;span&gt;2006&lt;/span&gt;). Inherently fast-growing species with acquisitive resource strategies are characterized by leaf and stem traits that promote carbon (C) gain and growth on resource-rich sites (e.g. high specific leaf area [SLA; leaf area per unit leaf dry mass], high leaf nitrogen [N] concentrations and low wood density [WD]). As these traits offer little protection against (a)biotic stressors, they reduce species' survival in low-resource environments (Aerts &amp; Chapin, &lt;span&gt;2000&lt;/span&gt;; Grime et al., &lt;span&gt;1997&lt;/span&gt;; Poorter &amp; Garnier, &lt;span&gt;2007&lt;/span&gt;; Reich et al., &lt;span&gt;1992&lt;/span&gt;). In contrast, inherently slow-growing species with a conservative resource strategy are equipped with thick, small and dense leaves and dense wood with high concentrations of secondary compounds. These traits improve drought resistance, mechanical strength and defence against pathogen attack (Ackerly, &lt;span&gt;2004&lt;/span&gt;; Chave et al., &lt;span&gt;2009&lt;/span&gt;; Hacke et al., &lt;span&gt;2001&lt;/span&gt;; Zanne et al.","PeriodicalId":191,"journal":{"name":"Journal of Ecology","volume":"33 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2025-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145697020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microplastic and drought influence the positive effect of plant diversity on plant biomass production 微塑料和干旱影响了植物多样性对植物生物量生产的积极作用
IF 5.5 1区 环境科学与生态学 Q1 ECOLOGY Pub Date : 2025-12-07 DOI: 10.1111/1365-2745.70217
Jing Man, Bo Tang, Yudi M. Lozano, Matthias C. Rillig
<h2>1 INTRODUCTION</h2><p>Microplastic pollution stands out as one of the most pervasive and enduring anthropogenic global change factors, having garnered recognition as a concern in biodiversity conservation efforts for terrestrial ecosystems (Bank et al., <span>2022</span>; de Souza Machado, Kloas, et al., <span>2018</span>; Rillig et al., <span>2023</span>). Microplastic particles, polymers (and their chemical additives) with a diameter smaller than 5 mm, can enter soil via atmospheric deposition, amendments, mulching and irrigation (Blasing & Amelung, <span>2018</span>; Brahney et al., <span>2020</span>). There is evidence highlighting the impact of microplastic on soil biophysical properties, such as water-holding capacity, aggregation and soil biota (de Souza Machado, Lau, et al., <span>2018</span>; Lehmann et al., <span>2019</span>; Liu, Feng, et al., <span>2023</span>), as well as their consequences on plant performance (Jia et al., <span>2023</span>; Rillig et al., <span>2019</span>). Understanding the latter is vital because plants play a key role in maintaining productivity and overall ecosystem functionality (Houghton et al., <span>2009</span>). The effects of microplastic on plant biomass have been extensively studied at the individual species level, with reported responses varying from negative to positive in species such as <i>Plantago lanceolata</i>, <i>Trifolium repens</i>, <i>Triticum aestivum</i>, <i>Lolium perenne</i> and <i>Daucus carota</i> (Fu et al., <span>2024</span>; Judy et al., <span>2019</span>; Lozano, Lehnert, et al., <span>2021</span>; van Kleunen et al., <span>2019</span>). These studies have paved the way for understanding how microplastic affects plants. However, the field is still in its infancy, as in natural ecosystems such as grassland, diverse plant species typically coexist and interact. To date, studies investigating the effects of microplastic on plant communities are comparatively rare (Xu et al., <span>2024</span>; Yu et al., <span>2021</span>), highlighting the urgent need to understand microplastic impacts at the plant community level. A recent study found that adding microplastic to soil increased the biomass of <i>Hieracium pilosella</i> (forb) but decreased that of <i>Festuca brevipila</i> (grass) within a mixed plant community (Lozano & Rillig, <span>2020</span>). Similarly, He, Yao, et al. (<span>2024</span>) reported that different plant species in an experimental grass–forb mixture community showed varying degrees of change in abundance following microplastic addition. Therefore, the varied responses of different species or plant functional groups, which are groups of species with similar ecological strategies such as grasses, forbs and legumes (Díaz & Cabido, <span>2001</span>; McLaren & Turkington, <span>2010</span>), to microplastic addition have the potential to affect plant community composition and plant diversity.</p><p>Plant diversity is crucial for maintaining ecosys
微塑料污染是最普遍和持久的人为全球变化因素之一,已成为陆地生态系统生物多样性保护工作的关注焦点(Bank等人,2022;de Souza Machado, Kloas等人,2018;Rillig等人,2023)。直径小于5mm的微塑料颗粒、聚合物(及其化学添加剂)可以通过大气沉降、修正、覆盖和灌溉进入土壤(Blasing & Amelung, 2018; Brahney et al., 2020)。有证据强调了微塑料对土壤生物物理特性的影响,如持水能力、聚集性和土壤生物群(de Souza Machado, Lau等,2018;Lehmann等,2019;Liu, Feng等,2023),以及它们对植物性能的影响(Jia等,2023;Rillig等,2019)。了解后者至关重要,因为植物在维持生产力和整体生态系统功能方面发挥着关键作用(Houghton et al., 2009)。微塑料对植物生物量的影响已在单个物种水平上进行了广泛研究,据报道,在车前草(Plantago lanceolata)、三叶草(Trifolium repens)、小麦(Triticum aestivum)、多年生Lolium perenne和胡萝卜(Daucus carota)等物种中,反应从阴性到阳性不等(Fu等人,2024;Judy等人,2019;Lozano, Lehnert等人,2021;van Kleunen等人,2019)。这些研究为理解微塑料如何影响植物铺平了道路。然而,该领域仍处于起步阶段,因为在草原等自然生态系统中,不同的植物物种通常共存并相互作用。迄今为止,研究微塑料对植物群落影响的研究相对较少(Xu et al., 2024; Yu et al., 2021),这凸显了在植物群落水平上了解微塑料影响的迫切需要。最近的一项研究发现,在混合植物群落中,向土壤中添加微塑料增加了Hieracium pilosella(草本)的生物量,但减少了Festuca brevipila(草)的生物量(Lozano & Rillig, 2020)。同样,He, Yao等(2024)报道了草草混合群落中不同植物种类在添加微塑料后丰度发生不同程度的变化。因此,不同的物种或植物功能类群,即具有相似生态策略的物种类群,如草、forbs和豆科植物(Díaz & Cabido, 2001; McLaren & Turkington, 2010)对微塑料添加的不同反应有可能影响植物群落组成和植物多样性。植物多样性对于维持生态系统功能、减轻干旱等全球变化因素的影响以及确保生态系统稳定至关重要(Hooper et al., 2012; Tilman et al., 2014)。越来越多的证据表明,植物多样性可以增强生态系统功能,如植物生产力(Cardinale等,2012;Loreau等,2021)。互补效应(CE)和选择效应(SE)是解释这种积极关系的两种潜在机制(Loreau & Hector, 2001)。当一个群落内不同的植物物种或功能群以提高整体生产力的方式相互补充时,就会出现正生产力。其中包括生态位分化,通过更有效和完全地利用现有资源来减少种间竞争,以及促进作用,一些物种因此改善资源可用性或减轻其邻居的环境压力(Barry等人,2019;Fagundes等人,2023)。相反,当单作生物量大的物种不成比例地提高生产力时,SE值为正。CE和SE也可能出现阴性。当干扰竞争或拮抗相互作用超过生态位分化的积极作用时,就会出现负生态环境效应。当生产力较低的物种在群落中占主导地位时,就会出现负SE,从而降低整体生产力(Loreau et al., 2012)。然而,针对生物多样性效应及其机制的研究大多是在环境条件下进行的(Kuebbing et al., 2015; Wagg et al., 2022)。最近的研究表明,全球变化因素可能影响植物多样性与生产力之间的关系(He, Barry, et al., 2024; Hong et al., 2022; Shovon et al., 2024)。例如,干旱可能会加强植物多样性对地上生物量的积极影响,并增加CE的强度(Xi et al., 2022)。目前,还没有直接证据表明微塑料是否以及如何影响植物多样性与生物量之间的关系。尽管如此,对植物群落的研究表明,微塑料的添加可能会改变物种的优势,例如,减少Holcus lanatus(一种草)的优势,同时增加Hieracium pilosella(一种forb)的优势(Lozano & Rillig, 2020)。 此外,微塑料的添加可能会改变植物物种之间的种间相互作用,将它们从积极的联系转变为中性的联系(He, Yao, et al., 2024)。因此,可以预期,物种相互作用和优势的改变可能会影响互补和选择效应。因此,微塑料污染可能会改变植物多样性对生物量生产的影响,这取决于它对互补和选择效应的影响程度。如果微塑料抑制了植物多样性对生态系统功能的积极影响,这将对生态系统管理和我们对生物多样性-生态系统功能关系的理论理解产生重要影响。鉴于目前缺乏经验证据,有必要探讨微塑料如何影响植物多样性与生物量之间的关系,以及潜在的生物多样性效应。最近的研究表明,微塑料,如微塑料纤维,可以改变土壤水分动态,从而可能减轻或加剧干旱(de Souza Machado等人,2019;Lozano & Rillig, 2020)。干旱是最常被研究的全球变化因子之一,它影响植物群落组成和植物多样性-生产力关系(Chen et al., 2022; ezez et al., 2017; Hoover et al., 2014),对豆科植物和草本植物的抑制作用往往大于对禾草的抑制作用(Carlsson et al., 2017; Stampfli et al., 2018; Wu et al., 2019)。这些发现表明,微塑料可能与干旱相互作用,影响不同的植物功能群,从而影响植物群落组成和植物多样性-生产力关系。事实上,研究表明微塑料可以与干旱相互作用,影响土壤生物群,如微食物网和真菌群落(Liu, Wang, & Zhu, 2023; Lozano et al., 2024)。然而,微塑料和干旱共同作用对植物群落和生物多样性的影响在很大程度上仍不清楚。解决这些影响至关重要,因为了解微塑料和干旱对植物多样性-生产力关系的共同影响以及任何潜在机制可以帮助我们全面解决和管理生物多样性和生态系统功能的风险(Naeem等人,2012;Sigmund等人,2022)。在这里,我们进行了温室实验使用16个物种的实验从池中植物群落组装属于三官能团(如草,福布斯和豆类)来创建一个梯度的植物多样性与1,2,4,8和16个植物物种,受到四个塑料微粒(MP)×干旱(D)场景:控制(没有议员,富水),MP(只有MP,富水),D (D,没有国会议员)和国会议员和D治疗(MP + D)。我们旨在探讨微塑料和干旱是否以及如何影响植物多样性与植物生物量生产的关系,以及它们对生物多样性效应的影响。我们测量了地上和地下生物量,并
{"title":"Microplastic and drought influence the positive effect of plant diversity on plant biomass production","authors":"Jing Man, Bo Tang, Yudi M. Lozano, Matthias C. Rillig","doi":"10.1111/1365-2745.70217","DOIUrl":"https://doi.org/10.1111/1365-2745.70217","url":null,"abstract":"&lt;h2&gt;1 INTRODUCTION&lt;/h2&gt;\u0000&lt;p&gt;Microplastic pollution stands out as one of the most pervasive and enduring anthropogenic global change factors, having garnered recognition as a concern in biodiversity conservation efforts for terrestrial ecosystems (Bank et al., &lt;span&gt;2022&lt;/span&gt;; de Souza Machado, Kloas, et al., &lt;span&gt;2018&lt;/span&gt;; Rillig et al., &lt;span&gt;2023&lt;/span&gt;). Microplastic particles, polymers (and their chemical additives) with a diameter smaller than 5 mm, can enter soil via atmospheric deposition, amendments, mulching and irrigation (Blasing &amp; Amelung, &lt;span&gt;2018&lt;/span&gt;; Brahney et al., &lt;span&gt;2020&lt;/span&gt;). There is evidence highlighting the impact of microplastic on soil biophysical properties, such as water-holding capacity, aggregation and soil biota (de Souza Machado, Lau, et al., &lt;span&gt;2018&lt;/span&gt;; Lehmann et al., &lt;span&gt;2019&lt;/span&gt;; Liu, Feng, et al., &lt;span&gt;2023&lt;/span&gt;), as well as their consequences on plant performance (Jia et al., &lt;span&gt;2023&lt;/span&gt;; Rillig et al., &lt;span&gt;2019&lt;/span&gt;). Understanding the latter is vital because plants play a key role in maintaining productivity and overall ecosystem functionality (Houghton et al., &lt;span&gt;2009&lt;/span&gt;). The effects of microplastic on plant biomass have been extensively studied at the individual species level, with reported responses varying from negative to positive in species such as &lt;i&gt;Plantago lanceolata&lt;/i&gt;, &lt;i&gt;Trifolium repens&lt;/i&gt;, &lt;i&gt;Triticum aestivum&lt;/i&gt;, &lt;i&gt;Lolium perenne&lt;/i&gt; and &lt;i&gt;Daucus carota&lt;/i&gt; (Fu et al., &lt;span&gt;2024&lt;/span&gt;; Judy et al., &lt;span&gt;2019&lt;/span&gt;; Lozano, Lehnert, et al., &lt;span&gt;2021&lt;/span&gt;; van Kleunen et al., &lt;span&gt;2019&lt;/span&gt;). These studies have paved the way for understanding how microplastic affects plants. However, the field is still in its infancy, as in natural ecosystems such as grassland, diverse plant species typically coexist and interact. To date, studies investigating the effects of microplastic on plant communities are comparatively rare (Xu et al., &lt;span&gt;2024&lt;/span&gt;; Yu et al., &lt;span&gt;2021&lt;/span&gt;), highlighting the urgent need to understand microplastic impacts at the plant community level. A recent study found that adding microplastic to soil increased the biomass of &lt;i&gt;Hieracium pilosella&lt;/i&gt; (forb) but decreased that of &lt;i&gt;Festuca brevipila&lt;/i&gt; (grass) within a mixed plant community (Lozano &amp; Rillig, &lt;span&gt;2020&lt;/span&gt;). Similarly, He, Yao, et al. (&lt;span&gt;2024&lt;/span&gt;) reported that different plant species in an experimental grass–forb mixture community showed varying degrees of change in abundance following microplastic addition. Therefore, the varied responses of different species or plant functional groups, which are groups of species with similar ecological strategies such as grasses, forbs and legumes (Díaz &amp; Cabido, &lt;span&gt;2001&lt;/span&gt;; McLaren &amp; Turkington, &lt;span&gt;2010&lt;/span&gt;), to microplastic addition have the potential to affect plant community composition and plant diversity.&lt;/p&gt;\u0000&lt;p&gt;Plant diversity is crucial for maintaining ecosys","PeriodicalId":191,"journal":{"name":"Journal of Ecology","volume":"4 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2025-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145697004","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Flower–leaf sequence shapes plant phenological sensitivity to warming 花叶序列决定了植物对暖化的物候敏感性
IF 5.5 1区 环境科学与生态学 Q1 ECOLOGY Pub Date : 2025-12-07 DOI: 10.1111/1365-2745.70210
Xingli Xia, Fangxiu Wan, Wanying Cheng, Liming Yan, Songbo Tang, Huanjiong Wang, Junhu Dai, Jianyang Xia

CONFLICT OF INTEREST STATEMENT

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. Jianyang Xia is an Associate Editor of the Journal of Ecology, but took no part in the peer review and decision-making processes for this paper.

利益冲突声明作者声明,他们没有已知的竞争经济利益或个人关系,可能会影响本文所报道的工作。夏建阳,《生态学报》副主编,未参与论文的同行评议和决策过程。
{"title":"Flower–leaf sequence shapes plant phenological sensitivity to warming","authors":"Xingli Xia, Fangxiu Wan, Wanying Cheng, Liming Yan, Songbo Tang, Huanjiong Wang, Junhu Dai, Jianyang Xia","doi":"10.1111/1365-2745.70210","DOIUrl":"https://doi.org/10.1111/1365-2745.70210","url":null,"abstract":"<h2> CONFLICT OF INTEREST STATEMENT</h2>\u0000<p>The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. Jianyang Xia is an Associate Editor of the Journal of Ecology, but took no part in the peer review and decision-making processes for this paper.</p>","PeriodicalId":191,"journal":{"name":"Journal of Ecology","volume":"93 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2025-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145697005","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Facilitation and constraint: Wave exposure and intraspecific interactions influence mangrove seedling morphology and resistance to dislodgement 促进和约束:波浪暴露和种内相互作用影响红树林幼苗形态和对迁移的抗性
IF 5.5 1区 环境科学与生态学 Q1 ECOLOGY Pub Date : 2025-12-05 DOI: 10.1111/1365-2745.70215
Lukas Meysick, Julian Merder, Conrad Pilditch, Richard Bulmer, Christoffer Boström, Jack Hamilton, Karin Bryan, Carolyn Lundquist
Understanding the factors controlling mangrove seedling establishment is essential for maintaining forests and restoration under changing environmental conditions. While adaptive strategies and plasticity in seedling biomass allocation are expected along hydrodynamic gradients, there is little information on how this is modulated by the interplay between intraspecific facilitation (e.g. wave attenuation, anchoring by roots of adult trees) and competition (e.g. light limitation, space competition). We conducted a field study across 12 sites (in nine estuaries) that spanned a gradient in wave exposure, to examine how mangrove seedling abundance, removal force and biomass allocation varied across three habitat types—mangrove forest, pneumatophore zone and unvegetated intertidal flat. Seedling removal force increased with root biomass and decreased with sediment mud content. Results also indicated strong intraspecific facilitation through adult root anchorage for early establishment of seedlings (where their root biomass <0.2–0.5 g ind −1 ). However, the stabilizing effect of adult root biomass may be counterbalanced by increased light limitation, sediment accretion and competition with conspecifics, as indicated by stem etiolation. Under low wave exposure conditions, seedlings in the unvegetated intertidal flats were characterized by the highest leaf and lateral root biomass, while seedlings in the mangrove forest had the highest stem biomass and lowest stem width to stem height ratio, indicating divergent growth strategies shaped by local facilitation and competition dynamics. As wave exposure increased, all seedlings shifted investment towards below‐ground structures, particularly taproots, as well as towards shorter, thicker stems, indicating morphological convergence across habitats under high environmental stress. Synthesis . Our findings highlight the dual influence of intraspecific interactions and environmental constraints in shaping seedling morphology. While facilitation promotes seedling stability in the mangrove habitat, resource (light) limitation likely drives stem etiolation. Ultimately, wave exposure imposes functional convergence in biomass allocation across habitats. This shift underscores the dominant role of physical stress in structuring early biomass allocation strategies. These insights enhance our understanding of mangrove seedling responses to environmental gradients and inform conservation strategies in dynamic coastal systems.
了解控制红树林幼苗形成的因素,对于在变化的环境条件下维持和恢复红树林至关重要。虽然幼苗生物量分配的适应性策略和可塑性是沿着水动力梯度进行的,但关于这是如何通过种内促进(如波衰减,成年树的根锚定)和竞争(如光限制,空间竞争)之间的相互作用进行调节的信息很少。我们在12个地点(9个河口)进行了一项实地研究,这些地点跨越了波浪暴露的梯度,以研究红树林幼苗丰度、迁移力和生物量分配在三种栖息地类型(红树林、气团带和无植被的潮间带)中的变化。拔苗力随根系生物量的增加而增大,随泥沙含量的增加而减小。结果还表明,通过成体根锚对幼苗的早期建立具有很强的种内促进作用(其根生物量为0.2-0.5 g,−1)。然而,如茎黄化所示,成年根生物量的稳定作用可能被增加的光照限制、沉积物增加和与同种植物的竞争所抵消。低波暴露条件下,无植被潮间带的幼苗叶片和侧根生物量最高,而红树林的幼苗茎生物量最高,茎宽高比最低,表明受局部促进和竞争动态的影响,幼苗的生长策略存在差异。随着波浪暴露的增加,所有幼苗都将投资转向地下结构,特别是主根,以及更短、更粗的茎,这表明在高环境胁迫下,不同栖息地的形态趋同。合成。我们的研究结果强调了种内相互作用和环境约束在塑造幼苗形态中的双重影响。虽然促进促进了红树林生境中幼苗的稳定性,但资源(光)限制可能会导致茎黄化。最终,波浪暴露在不同栖息地的生物量分配中施加了功能收敛。这种转变强调了物理压力在构建早期生物量分配策略中的主导作用。这些见解增强了我们对红树林幼苗对环境梯度的反应的理解,并为动态海岸系统的保护策略提供了信息。
{"title":"Facilitation and constraint: Wave exposure and intraspecific interactions influence mangrove seedling morphology and resistance to dislodgement","authors":"Lukas Meysick, Julian Merder, Conrad Pilditch, Richard Bulmer, Christoffer Boström, Jack Hamilton, Karin Bryan, Carolyn Lundquist","doi":"10.1111/1365-2745.70215","DOIUrl":"https://doi.org/10.1111/1365-2745.70215","url":null,"abstract":"<jats:list> <jats:list-item> Understanding the factors controlling mangrove seedling establishment is essential for maintaining forests and restoration under changing environmental conditions. While adaptive strategies and plasticity in seedling biomass allocation are expected along hydrodynamic gradients, there is little information on how this is modulated by the interplay between intraspecific facilitation (e.g. wave attenuation, anchoring by roots of adult trees) and competition (e.g. light limitation, space competition). </jats:list-item> <jats:list-item> We conducted a field study across 12 sites (in nine estuaries) that spanned a gradient in wave exposure, to examine how mangrove seedling abundance, removal force and biomass allocation varied across three habitat types—mangrove forest, pneumatophore zone and unvegetated intertidal flat. </jats:list-item> <jats:list-item> Seedling removal force increased with root biomass and decreased with sediment mud content. Results also indicated strong intraspecific facilitation through adult root anchorage for early establishment of seedlings (where their root biomass &lt;0.2–0.5 g ind <jats:sup>−1</jats:sup> ). However, the stabilizing effect of adult root biomass may be counterbalanced by increased light limitation, sediment accretion and competition with conspecifics, as indicated by stem etiolation. Under low wave exposure conditions, seedlings in the unvegetated intertidal flats were characterized by the highest leaf and lateral root biomass, while seedlings in the mangrove forest had the highest stem biomass and lowest stem width to stem height ratio, indicating divergent growth strategies shaped by local facilitation and competition dynamics. As wave exposure increased, all seedlings shifted investment towards below‐ground structures, particularly taproots, as well as towards shorter, thicker stems, indicating morphological convergence across habitats under high environmental stress. </jats:list-item> <jats:list-item> <jats:italic>Synthesis</jats:italic> . Our findings highlight the dual influence of intraspecific interactions and environmental constraints in shaping seedling morphology. While facilitation promotes seedling stability in the mangrove habitat, resource (light) limitation likely drives stem etiolation. Ultimately, wave exposure imposes functional convergence in biomass allocation across habitats. This shift underscores the dominant role of physical stress in structuring early biomass allocation strategies. These insights enhance our understanding of mangrove seedling responses to environmental gradients and inform conservation strategies in dynamic coastal systems. </jats:list-item> </jats:list>","PeriodicalId":191,"journal":{"name":"Journal of Ecology","volume":"33 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2025-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145673655","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Are diverse forests thirstier? A meta‐analysis reveals no evidence for a consistent effect of species or functional diversity on tree transpiration 多样的森林更渴吗?一项荟萃分析显示,没有证据表明物种或功能多样性对树木蒸腾有一致的影响
IF 5.5 1区 环境科学与生态学 Q1 ECOLOGY Pub Date : 2025-12-02 DOI: 10.1111/1365-2745.70211
Tanvir Ahmed Shovon, Nia Perron, Damien Bonal, Christian Messier, Audrey Maheu
Tree species diversity can enhance forest productivity and resistance to climate extremes but can also increase transpiration rates, potentially exacerbating drought stress. A large variability in the effect of tree diversity on transpiration is found in the literature, and we conducted a meta‐analysis to help better understand drivers of this variability. We computed effect sizes by comparing tree transpiration of mixed plots to monocultures from 31 studies. We calculated effect sizes at the species (comparison of trees of a given species in monoculture vs. mixed plots) and community (comparison of transpiration by all trees in monoculture vs. mixed plots) levels and assessed the influence of species richness, functional richness, water limitation (drought or regional aridity) and functional identity at the species level. Our meta‐analysis revealed no overall effect of species or functional diversity on transpiration at the species or community level, instead emphasizing the large variability in the magnitude and direction of effects. Indeed, transpiration's response to diversity was not influenced by species richness nor functional richness, suggesting that these factors are not key drivers of variability on a large scale. At the species level, wood density and tree type (gymnosperm vs. angiosperm) mediated the effect of diversity on transpiration: under drought conditions, species with low wood density transpired less in mixtures than in monocultures while species with high wood density transpired more in mixtures than in monocultures. For gymnosperms, diversity had a diminishing influence on transpiration, mainly under drought condition. Synthesis : We found that neither species nor functional diversity had a systematic influence on the effect of diversity on transpiration. Instead, only functional identity was found to exert a driving influence. Overall, much of the variability in transpiration's response to diversity remained unexplained. These results highlight the challenge of predicting the response of transpiration to species mixing, suggesting the need to proactively investigate mixtures through experimentation to anticipate the implications of specific species assemblages on water resource use.
树种多样性可以提高森林生产力和对极端气候的抵抗力,但也可以增加蒸腾速率,可能加剧干旱压力。文献中发现树木多样性对蒸腾的影响存在很大的可变性,我们进行了荟萃分析,以帮助更好地理解这种可变性的驱动因素。我们通过比较31项研究中混合地块和单一地块的树木蒸腾来计算效应值。我们计算了物种(单一栽培与混合栽培中给定物种的树木的比较)和群落(单一栽培与混合栽培中所有树木的蒸腾作用的比较)水平上的效应大小,并评估了物种丰富度、功能丰富度、水分限制(干旱或区域干旱)和功能同一性在物种水平上的影响。我们的荟萃分析显示,在物种或群落水平上,物种或功能多样性对蒸腾没有总体影响,而是强调了影响的幅度和方向的巨大变异性。事实上,蒸腾对多样性的响应不受物种丰富度和功能丰富度的影响,这表明这些因素不是大尺度变异性的关键驱动因素。在物种水平上,木材密度和树种类型(裸子植物与被子植物)介导了多样性对蒸腾的影响:在干旱条件下,木材密度低的树种混合蒸腾量低于单一栽培,而木材密度高的树种混合蒸腾量高于单一栽培。对裸子植物来说,多样性对蒸腾的影响逐渐减弱,尤其是在干旱条件下。综合:我们发现物种多样性和功能多样性都没有系统地影响多样性对蒸腾的影响。相反,只有功能认同被发现发挥驱动影响。总的来说,蒸腾作用对多样性反应的许多可变性仍未得到解释。这些结果突出了预测物种混合对蒸腾的响应的挑战,表明需要通过实验积极研究混合,以预测特定物种组合对水资源利用的影响。
{"title":"Are diverse forests thirstier? A meta‐analysis reveals no evidence for a consistent effect of species or functional diversity on tree transpiration","authors":"Tanvir Ahmed Shovon, Nia Perron, Damien Bonal, Christian Messier, Audrey Maheu","doi":"10.1111/1365-2745.70211","DOIUrl":"https://doi.org/10.1111/1365-2745.70211","url":null,"abstract":"<jats:list> <jats:list-item> Tree species diversity can enhance forest productivity and resistance to climate extremes but can also increase transpiration rates, potentially exacerbating drought stress. A large variability in the effect of tree diversity on transpiration is found in the literature, and we conducted a meta‐analysis to help better understand drivers of this variability. </jats:list-item> <jats:list-item> We computed effect sizes by comparing tree transpiration of mixed plots to monocultures from 31 studies. We calculated effect sizes at the species (comparison of trees of a given species in monoculture vs. mixed plots) and community (comparison of transpiration by all trees in monoculture vs. mixed plots) levels and assessed the influence of species richness, functional richness, water limitation (drought or regional aridity) and functional identity at the species level. </jats:list-item> <jats:list-item> Our meta‐analysis revealed no overall effect of species or functional diversity on transpiration at the species or community level, instead emphasizing the large variability in the magnitude and direction of effects. Indeed, transpiration's response to diversity was not influenced by species richness nor functional richness, suggesting that these factors are not key drivers of variability on a large scale. </jats:list-item> <jats:list-item> At the species level, wood density and tree type (gymnosperm vs. angiosperm) mediated the effect of diversity on transpiration: under drought conditions, species with low wood density transpired less in mixtures than in monocultures while species with high wood density transpired more in mixtures than in monocultures. For gymnosperms, diversity had a diminishing influence on transpiration, mainly under drought condition. </jats:list-item> <jats:list-item> <jats:italic>Synthesis</jats:italic> : We found that neither species nor functional diversity had a systematic influence on the effect of diversity on transpiration. Instead, only functional identity was found to exert a driving influence. Overall, much of the variability in transpiration's response to diversity remained unexplained. These results highlight the challenge of predicting the response of transpiration to species mixing, suggesting the need to proactively investigate mixtures through experimentation to anticipate the implications of specific species assemblages on water resource use. </jats:list-item> </jats:list>","PeriodicalId":191,"journal":{"name":"Journal of Ecology","volume":"30 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2025-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145651177","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Ecology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1