首页 > 最新文献

Journal of Ecology最新文献

英文 中文
The intrinsic coordination of tree growth strategy and wood decomposability 树木生长策略与木材分解性的内在协调性
IF 5.6 1区 环境科学与生态学 Q1 ECOLOGY Pub Date : 2026-02-06 DOI: 10.1111/1365-2745.70252
Donghao Wu, Sebastian Seibold, Yong Chen, Zhenzhen Shao, Yongjia Wang, Chengjin Chu, Mingjian Yu

{"title":"The intrinsic coordination of tree growth strategy and wood decomposability","authors":"Donghao Wu,&nbsp;Sebastian Seibold,&nbsp;Yong Chen,&nbsp;Zhenzhen Shao,&nbsp;Yongjia Wang,&nbsp;Chengjin Chu,&nbsp;Mingjian Yu","doi":"10.1111/1365-2745.70252","DOIUrl":"10.1111/1365-2745.70252","url":null,"abstract":"<p>\u0000 \u0000 </p>","PeriodicalId":191,"journal":{"name":"Journal of Ecology","volume":"114 2","pages":""},"PeriodicalIF":5.6,"publicationDate":"2026-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146129274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Plant diversity increases microbial resistance to drought and soil carbon accumulation 植物多样性增加了微生物对干旱的抵抗力和土壤碳积累
IF 5.5 1区 环境科学与生态学 Q1 ECOLOGY Pub Date : 2026-02-06 DOI: 10.1111/1365-2745.70250
Sara Winterfeldt, Richard D. Bardgett, Albert C. Brangarí, Nico Eisenhauer, Lettice C. Hicks, Shangshi Liu, Johannes Rousk
<h2>1 INTRODUCTION</h2><p>Plant diversity is an important driver of many ecosystem functions (Fornara & Tilman, <span>2008</span>; Hooper et al., <span>2012</span>; Van Ruijven & Berendse, <span>2003</span>). Higher diversity can provide more favourable conditions for soil microorganisms by stabilising temperatures and increasing resource availability through enhanced carbon (C) inputs (Eisenhauer et al., <span>2013</span>; Huang et al., <span>2024</span>; Mellado-Vázquez et al., <span>2016</span>). Consequently, plant diversity can influence the microbial regulation of decomposition (Hooper et al., <span>2012</span>), nutrient provisioning (Balvanera et al., <span>2006</span>) and soil C storage (Fornara & Tilman, <span>2008</span>; Lange et al., <span>2015</span>), thereby linking plant and microbial functioning. However, climate extremes such as drought are increasing in frequency and intensity, posing a threat to plant–microbial systems with negative consequences for microbial functions (Chiang et al., <span>2021</span>; Chomel et al., <span>2022</span>; Thuiller et al., <span>2005</span>; Trenberth et al., <span>2014</span>).</p><p>Plant diversity can influence below-ground C via higher productivity. Higher plant productivity increases root biomass and in turn the amount of root litter and C input via root exudates (Eisenhauer et al., <span>2013</span>; Mueller et al., <span>2013</span>; Ravenek et al., <span>2014</span>). Diverse plant communities are also more likely to contain species with different root traits that can explore larger soil volumes (Tilman et al., <span>2014</span>) and reach deeper soil layers (Mueller et al., <span>2013</span>). However, the increase in root biomass with plant diversity is still most pronounced in the topsoil (Ravenek et al., <span>2014</span>), which suggests that plant diversity might influence microbial communities differently across soil depths (Fornara & Tilman, <span>2008</span>; Lange et al., <span>2023</span>). In addition, plant diversity is known to enhance microbial biomass and respiration (Eisenhauer et al., <span>2010</span>; Steinauer et al., <span>2015</span>; Thakur et al., <span>2015</span>), as well as microbial growth, resulting in a faster microbial turnover (Prommer et al., <span>2020</span>). The increase in microbial activity is likely driven by enhanced access to a higher quantity and quality of plant-derived C from rhizosphere inputs (Eisenhauer et al., <span>2017</span>; Fornara & Tilman, <span>2008</span>; Lange et al., <span>2015</span>; Mellado-Vázquez et al., <span>2016</span>), which consist of labile easily assimilable resources that microbial communities can use (Mellado-Vázquez et al., <span>2016</span>; Xu et al., <span>2014</span>). In turn, higher microbial growth can promote soil C accumulation by transforming C into more persistent forms, which may ultimately lead to higher soil C stocks (Bradford et al., <span>2013</span>; Liang et al., <span>
{"title":"Plant diversity increases microbial resistance to drought and soil carbon accumulation","authors":"Sara Winterfeldt, Richard D. Bardgett, Albert C. Brangarí, Nico Eisenhauer, Lettice C. Hicks, Shangshi Liu, Johannes Rousk","doi":"10.1111/1365-2745.70250","DOIUrl":"https://doi.org/10.1111/1365-2745.70250","url":null,"abstract":"&lt;h2&gt;1 INTRODUCTION&lt;/h2&gt;\u0000&lt;p&gt;Plant diversity is an important driver of many ecosystem functions (Fornara &amp; Tilman, &lt;span&gt;2008&lt;/span&gt;; Hooper et al., &lt;span&gt;2012&lt;/span&gt;; Van Ruijven &amp; Berendse, &lt;span&gt;2003&lt;/span&gt;). Higher diversity can provide more favourable conditions for soil microorganisms by stabilising temperatures and increasing resource availability through enhanced carbon (C) inputs (Eisenhauer et al., &lt;span&gt;2013&lt;/span&gt;; Huang et al., &lt;span&gt;2024&lt;/span&gt;; Mellado-Vázquez et al., &lt;span&gt;2016&lt;/span&gt;). Consequently, plant diversity can influence the microbial regulation of decomposition (Hooper et al., &lt;span&gt;2012&lt;/span&gt;), nutrient provisioning (Balvanera et al., &lt;span&gt;2006&lt;/span&gt;) and soil C storage (Fornara &amp; Tilman, &lt;span&gt;2008&lt;/span&gt;; Lange et al., &lt;span&gt;2015&lt;/span&gt;), thereby linking plant and microbial functioning. However, climate extremes such as drought are increasing in frequency and intensity, posing a threat to plant–microbial systems with negative consequences for microbial functions (Chiang et al., &lt;span&gt;2021&lt;/span&gt;; Chomel et al., &lt;span&gt;2022&lt;/span&gt;; Thuiller et al., &lt;span&gt;2005&lt;/span&gt;; Trenberth et al., &lt;span&gt;2014&lt;/span&gt;).&lt;/p&gt;\u0000&lt;p&gt;Plant diversity can influence below-ground C via higher productivity. Higher plant productivity increases root biomass and in turn the amount of root litter and C input via root exudates (Eisenhauer et al., &lt;span&gt;2013&lt;/span&gt;; Mueller et al., &lt;span&gt;2013&lt;/span&gt;; Ravenek et al., &lt;span&gt;2014&lt;/span&gt;). Diverse plant communities are also more likely to contain species with different root traits that can explore larger soil volumes (Tilman et al., &lt;span&gt;2014&lt;/span&gt;) and reach deeper soil layers (Mueller et al., &lt;span&gt;2013&lt;/span&gt;). However, the increase in root biomass with plant diversity is still most pronounced in the topsoil (Ravenek et al., &lt;span&gt;2014&lt;/span&gt;), which suggests that plant diversity might influence microbial communities differently across soil depths (Fornara &amp; Tilman, &lt;span&gt;2008&lt;/span&gt;; Lange et al., &lt;span&gt;2023&lt;/span&gt;). In addition, plant diversity is known to enhance microbial biomass and respiration (Eisenhauer et al., &lt;span&gt;2010&lt;/span&gt;; Steinauer et al., &lt;span&gt;2015&lt;/span&gt;; Thakur et al., &lt;span&gt;2015&lt;/span&gt;), as well as microbial growth, resulting in a faster microbial turnover (Prommer et al., &lt;span&gt;2020&lt;/span&gt;). The increase in microbial activity is likely driven by enhanced access to a higher quantity and quality of plant-derived C from rhizosphere inputs (Eisenhauer et al., &lt;span&gt;2017&lt;/span&gt;; Fornara &amp; Tilman, &lt;span&gt;2008&lt;/span&gt;; Lange et al., &lt;span&gt;2015&lt;/span&gt;; Mellado-Vázquez et al., &lt;span&gt;2016&lt;/span&gt;), which consist of labile easily assimilable resources that microbial communities can use (Mellado-Vázquez et al., &lt;span&gt;2016&lt;/span&gt;; Xu et al., &lt;span&gt;2014&lt;/span&gt;). In turn, higher microbial growth can promote soil C accumulation by transforming C into more persistent forms, which may ultimately lead to higher soil C stocks (Bradford et al., &lt;span&gt;2013&lt;/span&gt;; Liang et al., &lt;span&gt;","PeriodicalId":191,"journal":{"name":"Journal of Ecology","volume":"302 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2026-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146129249","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Contrasting drought responses in two grassland plant–microbe systems under climate change 气候变化下两种草地植物-微生物系统的干旱响应对比
IF 5.6 1区 环境科学与生态学 Q1 ECOLOGY Pub Date : 2026-02-05 DOI: 10.1111/1365-2745.70251
Gang Yang, Lisa Capponi, Michael Bahn, Andreas Schaumberger, Zuzana Münzbergová

{"title":"Contrasting drought responses in two grassland plant–microbe systems under climate change","authors":"Gang Yang,&nbsp;Lisa Capponi,&nbsp;Michael Bahn,&nbsp;Andreas Schaumberger,&nbsp;Zuzana Münzbergová","doi":"10.1111/1365-2745.70251","DOIUrl":"10.1111/1365-2745.70251","url":null,"abstract":"<p>\u0000 \u0000 </p>","PeriodicalId":191,"journal":{"name":"Journal of Ecology","volume":"114 2","pages":""},"PeriodicalIF":5.6,"publicationDate":"2026-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://besjournals.onlinelibrary.wiley.com/doi/epdf/10.1111/1365-2745.70251","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146129248","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The impact of warming on peak-season ecosystem carbon uptake is influenced by dominant species in warmer sites 暖化对高寒地区生态系统碳吸收的影响受优势种的影响
IF 5.6 1区 环境科学与生态学 Q1 ECOLOGY Pub Date : 2026-02-05 DOI: 10.1111/1365-2745.70247
Rose E. Brinkhoff, Nathan J. Sanders, Jeremiah A. Henning, Greg Newman, Quentin D. Read, Maja K. Sundqvist, Mark J. Hovenden, Case M. Prager, Kenna E. Rewcastle, Lara Souza, Olivia K. Vought, Aimée T. Classen

{"title":"The impact of warming on peak-season ecosystem carbon uptake is influenced by dominant species in warmer sites","authors":"Rose E. Brinkhoff,&nbsp;Nathan J. Sanders,&nbsp;Jeremiah A. Henning,&nbsp;Greg Newman,&nbsp;Quentin D. Read,&nbsp;Maja K. Sundqvist,&nbsp;Mark J. Hovenden,&nbsp;Case M. Prager,&nbsp;Kenna E. Rewcastle,&nbsp;Lara Souza,&nbsp;Olivia K. Vought,&nbsp;Aimée T. Classen","doi":"10.1111/1365-2745.70247","DOIUrl":"10.1111/1365-2745.70247","url":null,"abstract":"<p>\u0000 \u0000 </p>","PeriodicalId":191,"journal":{"name":"Journal of Ecology","volume":"114 2","pages":""},"PeriodicalIF":5.6,"publicationDate":"2026-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://besjournals.onlinelibrary.wiley.com/doi/epdf/10.1111/1365-2745.70247","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146129250","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mixed effects of drought on species-level traits and plant composition in the United States mixed-grass prairie 干旱对美国混交草草原物种性状和植物组成的混合影响
IF 5.6 1区 环境科学与生态学 Q1 ECOLOGY Pub Date : 2026-02-03 DOI: 10.1111/1365-2745.70244
Kathryn J. Bloodworth, Kimberly J. Komatsu, Lauren M. Porensky, Kurt O. Reinhart, Kaysa Vaarre-Lamoureux, Kevin R. Wilcox, Sally E. Koerner

全球降水变率正在增加,导致干旱发生和强度增加,这将对生态系统动态产生复杂的后果。定期评估干旱对植物群落的影响。然而,植物的功能特征(群落和物种水平)可以让我们更好地了解生态系统变化的复杂性,以响应不断变化的降水制度。在美国蒙大拿州和怀俄明两个混交草草原放牧地,通过控制干旱和放牧强度,同时进行自然干旱的观测研究,以评估群落和物种水平上植物物种组成和功能性状的变化。实施了2年的多强度干旱处理,监测了3年的干旱恢复情况。我们利用植物群落指标、群落加权均值和功能离散度测量了干旱实施期间和之后植物群落的变化和群落水平的功能性状。为了进一步评估干旱的影响,我们在4年的时间里,在蒙大拿州的降雨量低于平均水平34%至高于平均水平15%之间,在怀俄明州的降雨量低于平均水平30%至高于平均水平17%之间,测量了每个站点5种焦点植物的植物功能性状。研究发现,两个站点的植物群落都具有较强的耐旱性,仅发生了细微的、偶尔的特定站点的变化,群落水平的功能性状没有明显的变化。相反,降水随时间的变化与单个物种植物功能性状的变化有关。具体而言,物种表现出更大的叶厚、更低的叶干物质含量和更小的叶面积等回避或耐受干旱的性状。合成。我们的研究表明,植物群落和群落水平性状研究可能由于没有包括物种水平性状对干旱的响应而低估了性状变化。
{"title":"Mixed effects of drought on species-level traits and plant composition in the United States mixed-grass prairie","authors":"Kathryn J. Bloodworth,&nbsp;Kimberly J. Komatsu,&nbsp;Lauren M. Porensky,&nbsp;Kurt O. Reinhart,&nbsp;Kaysa Vaarre-Lamoureux,&nbsp;Kevin R. Wilcox,&nbsp;Sally E. Koerner","doi":"10.1111/1365-2745.70244","DOIUrl":"10.1111/1365-2745.70244","url":null,"abstract":"<p>\u0000 \u0000 </p>","PeriodicalId":191,"journal":{"name":"Journal of Ecology","volume":"114 2","pages":""},"PeriodicalIF":5.6,"publicationDate":"2026-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://besjournals.onlinelibrary.wiley.com/doi/epdf/10.1111/1365-2745.70244","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146115729","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Warming, elevated CO2 and drought in combination accelerates plant phenological shifts in managed montane grassland 气候变暖、二氧化碳浓度升高和干旱共同加速了管理的山地草地植物物候变化
IF 5.6 1区 环境科学与生态学 Q1 ECOLOGY Pub Date : 2026-02-02 DOI: 10.1111/1365-2745.70242
Lumnesh Swaroop Kumar Joseph, Andreas Schaumberger, Michael Bahn

大气中二氧化碳和其他温室气体浓度的迅速增加正在加速全球变暖,这反过来又有利于发生严重干旱事件。虽然气候变暖、二氧化碳浓度升高和干旱对某些物候阶段(如开花开始)的个别影响已经得到了相当充分的研究,但对许多其他阶段的探索仍然较少,特别是对多种全球变化驱动因素组合的响应。本研究采用中欧地区常见的农业管理方法,在一个管理的山地草地上进行了多因素试验,研究了暖化(+3°C)、二氧化碳浓度升高(+300 ppm)和夏季干旱对春季、夏季和夏末三个生长时期草地物种物候的个别和综合影响,包括禾草、豆科植物和草本植物。结果表明,增温提前了春季的高峰生长和开花物候,co2升高提前了开花时间,夏季干旱抑制了首次收获后再生的盛花期和衰老提前。增温和co2浓度升高对春季生长高峰具有较强的协同效应。在夏季,第一次刈割后,我们观察到对再生物候的加性或拮抗作用。与所有其他处理相比,夏季气候变暖、二氧化碳浓度升高和干旱的共同作用使大多数物种提前衰老。总体而言,我们的研究结果揭示了个体和综合全球变化驱动因素对山地草地物种物候的不同影响,强调物候变化是全球变化的关键指标。此外,我们的研究表明,所研究的全球变化驱动因素综合起来比单独的驱动因素对物候变化的影响更大。合成。增温、CO 2升高和干旱分别引起春季物候变化,并改变夏季刈割后牧草生长物候阶段的时间。这些变化可能会改变物种间的相互作用,从而影响生态系统的结构和功能。
{"title":"Warming, elevated CO2 and drought in combination accelerates plant phenological shifts in managed montane grassland","authors":"Lumnesh Swaroop Kumar Joseph,&nbsp;Andreas Schaumberger,&nbsp;Michael Bahn","doi":"10.1111/1365-2745.70242","DOIUrl":"10.1111/1365-2745.70242","url":null,"abstract":"<p>\u0000 \u0000 </p>","PeriodicalId":191,"journal":{"name":"Journal of Ecology","volume":"114 2","pages":""},"PeriodicalIF":5.6,"publicationDate":"2026-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://besjournals.onlinelibrary.wiley.com/doi/epdf/10.1111/1365-2745.70242","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146101319","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biological Flora of Britain and Ireland: Geranium sylvaticum* 英国和爱尔兰的生物区系:天竺葵*
IF 5.6 1区 环境科学与生态学 Q1 ECOLOGY Pub Date : 2026-02-02 DOI: 10.1111/1365-2745.70225
Markus Wagner, Richard G. Jefferson, Ruth E. Starr-Keddle, Sandra Varga, Irina Tatarenko, Duncan B. Westbury, Lucy Hulmes

本文介绍了天竺葵(木鹤的喙)生物学的各个方面的信息,这些信息与理解其生态特性和行为有关。主要主题是在英国和爱尔兰的生物植物区系的标准框架内提出的:分布、栖息地、群落、对生物因素的反应、对环境的反应、结构和生理学、物候学、花和种子特性、食草动物和疾病、历史、保护和管理。天竺葵(Geranium sylvaticum)是一种多年生草本植物,生长于林地、半天然草地、高大草本植被、北方矮灌木石楠、亚高山和亚北极灌丛。在英国和爱尔兰,它发生在凉爽潮湿的北部山区气候、高地干草草地、道路边缘、河岸、沼泽和泥潭、山区岩石壁架、峭壁和沟壑以及高地混合灰林。天竺葵广泛分布于苏格兰和英格兰北部,在威尔士、英格兰中部和爱尔兰安特里姆郡的海岸也有零星的本地分布。它在欧洲和亚洲有广泛的本地分布。在该山脉的东北端,G. sylvaticum可以生长在海平面以下,而在更南部的山脉地区,它仅限于山区栖息地。在英国和爱尔兰,天竺葵(Geranium sylvaticum)主要生长在中等肥力的中性至中等钙质土壤中。在它的欧亚大陆范围内,它也发生在更酸性的土壤上。天竺葵(Geranium sylvatium)是雌蕊异株,即单株典型的是雌性或雌雄同体。偶尔,个体是雌雄同株的,产生雌花和雌雄同体的花。雌花通常比突出的雌雄同体花小。花被膜翅目、双翅目、鳞翅目以及鞘翅目和半翅目昆虫所访问。山竹种子的初级传播是弹道传播,即种子从果实中喷射出来。该物种有一个短暂的土壤种子库,持续不到12个月。种子有物理休眠,即它们的种皮最初是不透水的。该物种几乎没有植物传播的能力。在英国和爱尔兰,主要在1987年以前,长时间的分布下降。最近在苏格兰北部观测到的记录显著增加,这要么是由于其分布轻微向北移动,要么是在以前记录不足的地区增加了记录。
{"title":"Biological Flora of Britain and Ireland: Geranium sylvaticum*","authors":"Markus Wagner,&nbsp;Richard G. Jefferson,&nbsp;Ruth E. Starr-Keddle,&nbsp;Sandra Varga,&nbsp;Irina Tatarenko,&nbsp;Duncan B. Westbury,&nbsp;Lucy Hulmes","doi":"10.1111/1365-2745.70225","DOIUrl":"10.1111/1365-2745.70225","url":null,"abstract":"<p>\u0000 \u0000 </p>","PeriodicalId":191,"journal":{"name":"Journal of Ecology","volume":"114 2","pages":""},"PeriodicalIF":5.6,"publicationDate":"2026-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://besjournals.onlinelibrary.wiley.com/doi/epdf/10.1111/1365-2745.70225","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146110544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Forest structure and connectivity drive the functional recovery of seed rain 森林结构和连通性驱动种子雨功能恢复
IF 5.6 1区 环境科学与生态学 Q1 ECOLOGY Pub Date : 2026-02-02 DOI: 10.1111/1365-2745.70243
Anna R. Landim, Santiago Erazo, Juan E. Guevara-Andino, Santiago F. Burneo, María-José Endara, Sebastian Escobar, Alexander Keller, Felicity L. Newell, Boris Tinoco, Marco Tschapka, Matthias Schleuning, Eike Lena Neuschulz

热带森林的恢复是由食果动物提供的种子传播引发的。植物和动物的性状决定了植物和食果动物之间的相互作用,最终决定了种子雨的功能多样性。然而,人们对植物-果实相互作用和种子雨的功能多样性和组成如何在局部和景观尺度上受到过程的影响仍然知之甚少。我们研究了局部森林结构和景观尺度森林连通性如何影响植物-果食性相互作用介导的种子雨功能恢复。在24个恢复林和8个原生林样地,我们测量了森林结构和连通性,记录了植物-果树相互作用,并在总共384个种子陷阱中量化了种子雨。森林结构通过植被异质性、地上生物量和树高、森林与周围森林覆盖的连通性以及与最近森林的距离来量化。利用植物和果树性状,量化了植物-果树相互作用和种子雨的功能恢复,并应用结构方程模型检验了森林结构和连通性对种子功能多样性和组成的直接和间接影响。森林结构对种子雨功能多样性的影响主要是由当地植物-果树相互作用介导的。此外,森林连通性是种子雨功能组成的主要驱动因素。大种子和后期演替物种的种子更常出现在具有高连通性的恢复森林中,通过植物-果实相互作用的直接和间接影响。这些模式表明森林恢复的两种互补机制。结构复杂的森林支持多种植物和动物群落,从而形成功能多样的种子雨。此外,森林连通性促进了动物在整个景观中的运动,促进了种子从原始森林传播到恢复森林。合成。当地森林结构和景观尺度的连通性形成了种子雨功能恢复的不同但互补的方面。这些发现强调,热带森林恢复需要考虑局部和景观尺度的过程,以确保热带森林功能多样性的恢复。
{"title":"Forest structure and connectivity drive the functional recovery of seed rain","authors":"Anna R. Landim,&nbsp;Santiago Erazo,&nbsp;Juan E. Guevara-Andino,&nbsp;Santiago F. Burneo,&nbsp;María-José Endara,&nbsp;Sebastian Escobar,&nbsp;Alexander Keller,&nbsp;Felicity L. Newell,&nbsp;Boris Tinoco,&nbsp;Marco Tschapka,&nbsp;Matthias Schleuning,&nbsp;Eike Lena Neuschulz","doi":"10.1111/1365-2745.70243","DOIUrl":"10.1111/1365-2745.70243","url":null,"abstract":"<p>\u0000 \u0000 </p>","PeriodicalId":191,"journal":{"name":"Journal of Ecology","volume":"114 2","pages":""},"PeriodicalIF":5.6,"publicationDate":"2026-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://besjournals.onlinelibrary.wiley.com/doi/epdf/10.1111/1365-2745.70243","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146110543","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Divergent root phosphorus-acquisition strategies of woody plants in the Qinling Mountains transition zone of China 秦岭过渡带木本植物不同根系磷获取策略
IF 5.6 1区 环境科学与生态学 Q1 ECOLOGY Pub Date : 2026-02-02 DOI: 10.1111/1365-2745.70245
Ruobing Lv, Boyuan Bi, Tongtong Xu, Qiong Chen, Qiulong Yin, Shihong Jia, Zhanqing Hao, Xiaochao Yang, Fei Yu, Hans Lambers, Zuoqiang Yuan

过渡区以明显的环境梯度和复杂的景观元素为特征,产生了选择压力,促使植物表现出不同的资源获取策略(特别是对磷的获取),以缓解土壤养分异质性和种间竞争。然而,支持根P策略在多维环境条件下表达的机制仍然很不清楚。在中国最大的亚热带—暖温带过渡带——秦岭,我们研究了18个海拔点的优势木本植物根系P -获取特征及其相关环境因子,这些海拔点横跨南北两个斜坡,具有不同的气候和植被特征。随着海拔的升高,根比根长(SRL)和根氮浓度的增加,以及南坡菌根定植的减少,促使根与菌根真菌(包括丛枝菌根和外生菌根)之间的共生关系向植物有效土壤p的根形态觅食策略(高SRL)转变。相反,北坡表现出相反的根性状协调。增加了菌根定植和根直径,但降低了磷酸酶活性和SRL,引发了从磷挖掘到磷清除的转变。不同斜坡根鞘磷酸酶活性的差异反映了植物对土壤有机磷池矿化的不同偏好:低海拔南坡的磷二酯酶占优势,而北坡的磷单酯酶、磷二酯酶和植酸酶活性较高。磷获取策略的变化受南坡土壤性质(pH值、温度、养分有效性)和气候(湿度和温度)的共同影响,但主要受北坡气候的影响。合成。综上所述,这些研究结果表明,过渡区植物通过协调根和菌根之间的权衡以及优先矿化有机磷来动态地重新配置磷获取策略,以响应多维环境过滤器。由于气候和土壤性质的相互作用,南北坡间磷获取策略的差异从根本上构建了过渡带植物群落的磷利用模式,并驱动了生态位分化。
{"title":"Divergent root phosphorus-acquisition strategies of woody plants in the Qinling Mountains transition zone of China","authors":"Ruobing Lv,&nbsp;Boyuan Bi,&nbsp;Tongtong Xu,&nbsp;Qiong Chen,&nbsp;Qiulong Yin,&nbsp;Shihong Jia,&nbsp;Zhanqing Hao,&nbsp;Xiaochao Yang,&nbsp;Fei Yu,&nbsp;Hans Lambers,&nbsp;Zuoqiang Yuan","doi":"10.1111/1365-2745.70245","DOIUrl":"10.1111/1365-2745.70245","url":null,"abstract":"<p>\u0000 \u0000 </p>","PeriodicalId":191,"journal":{"name":"Journal of Ecology","volume":"114 2","pages":""},"PeriodicalIF":5.6,"publicationDate":"2026-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146101318","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biological Flora of Britain and Ireland: Polygonatum multiflorum* 英国和爱尔兰的生物区系:何首乌*
IF 5.6 1区 环境科学与生态学 Q1 ECOLOGY Pub Date : 2026-02-01 DOI: 10.1111/1365-2745.70235
Pieter Vangansbeke, Haben Blondeel, Jörg Brunet, Marco Cosme, Ewout Duhamel, Guillaume Decocq, Karen De Pauw, Leen Depauw, Martin Diekmann, Jannis Till Feigs, Cristina Gasperini, Jenny Hagenblad, Dries Landuyt, Jonathan Lenoir, Jaan Liira, Eline Lorer, Tobias Naaf, Anna Orczewska, Jan Plue, Federico Selvi, Koenraad Van Meerbeek, Fien Vander Meulen, Thomas Vanneste, Safaa Wasof, Pieter De Frenne

本文介绍了何首乌生物学的各个方面的信息。所有人。(天门冬科),所罗门印章,这与了解其生态特性和行为有关。主要主题是在英国和爱尔兰的生物植物区系的标准框架内提出的:分布、栖息地、群落、对生物因素的反应、对环境的反应、结构和生理学、物候学、花和种子特性、食草动物和疾病、历史和保护。何首乌是一种根状、无性系多年生草本植物,主要生长在英国和爱尔兰的森林中,但也生长在树篱和阴凉的草地中。原生地包括温带欧洲的大部分地区,延伸到西亚,通常与营养丰富、湿润到排水良好的基质有关。该物种是半自然林地下层植物区系的典型组成部分,通常与其他耐阴物种共存,如多年生银莲花和海葵。何首乌的花是下垂的,管状的,乳白色的,顶端是绿色的,沿着拱形的茎排列成腋生的簇。它们主要由长舌蜂和大黄蜂授粉。由此产生的暗淡的蓝色浆果被鸟类传播,有助于植物在合适的栖息地传播。通过根茎延伸的营养生殖也很常见,导致或多或少明显的茎簇。由于甾体皂苷的存在,该物种相对来说不适合食草动物,尽管它有时被鹿和昆虫,如特殊的所罗门海豹锯蝇(Phymatocera aterrima)吃。它也容易受到真菌感染,从而导致铁锈病。最近的研究主要集中在生境破碎化条件下种群的遗传适应性、气候变化对物种物候的影响以及决定其扩散动态的营养和生殖生殖策略。历史上,何首乌因其据称的伤口愈合和抗炎特性而被视为草药。何首乌常与古代林地联系在一起。虽然该物种目前没有灭绝的危险,但林地管理措施、栖息地破碎化和气候变化可能导致其数量下降或范围缩小。
{"title":"Biological Flora of Britain and Ireland: Polygonatum multiflorum*","authors":"Pieter Vangansbeke,&nbsp;Haben Blondeel,&nbsp;Jörg Brunet,&nbsp;Marco Cosme,&nbsp;Ewout Duhamel,&nbsp;Guillaume Decocq,&nbsp;Karen De Pauw,&nbsp;Leen Depauw,&nbsp;Martin Diekmann,&nbsp;Jannis Till Feigs,&nbsp;Cristina Gasperini,&nbsp;Jenny Hagenblad,&nbsp;Dries Landuyt,&nbsp;Jonathan Lenoir,&nbsp;Jaan Liira,&nbsp;Eline Lorer,&nbsp;Tobias Naaf,&nbsp;Anna Orczewska,&nbsp;Jan Plue,&nbsp;Federico Selvi,&nbsp;Koenraad Van Meerbeek,&nbsp;Fien Vander Meulen,&nbsp;Thomas Vanneste,&nbsp;Safaa Wasof,&nbsp;Pieter De Frenne","doi":"10.1111/1365-2745.70235","DOIUrl":"10.1111/1365-2745.70235","url":null,"abstract":"<p>\u0000 \u0000 </p>","PeriodicalId":191,"journal":{"name":"Journal of Ecology","volume":"114 2","pages":""},"PeriodicalIF":5.6,"publicationDate":"2026-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146101320","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Ecology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1