首页 > 最新文献

Journal of Ecology最新文献

英文 中文
Species functional traits affect regional and local dominance across western Amazonian forests 物种功能特征影响了亚马逊西部森林的区域和局部优势
IF 5.5 1区 环境科学与生态学 Q1 ECOLOGY Pub Date : 2025-12-10 DOI: 10.1111/1365-2745.70214
Laura Matas‐Granados, Claire Fortunel, Luis Cayuela, Julia G. de Aledo, Celina Ben Saadi, Nathan J. B. Kraft, Christopher Baraloto, S. Joseph Wright, Jason Vleminckx, Nancy C. Garwood, Peter Hietz, Margaret R. Metz, Frederick C. Draper, Timothy R. Baker, Oliver L. Phillips, Eurídice N. Honorio Coronado, Kalle Ruokolainen, Roosevelt García‐Villacorta, Katherine H. Roucoux, Maximilien Guèze, Elvis Valderrama Sandoval, Paul V. A. Fine, Carlos A. Amasifuen Guerra, Ricardo Zarate Gomez, Pablo R. Stevenson, Abel Monteagudo‐Mendoza, Rodolfo Vasquez Martinez, John Terborgh, Mathias Disney, Roel Brienen, Percy Núñez Vargas, Jhon del Aguila Pasquel, Yadvinder Malhi, Jacob B. Socolar, Gerardo Flores Llampazo, Jim Vega Arenas, Darcy Galiano Cabrera, Javier Silva Espejo, Joey Talbot, Barbara Vinceti, José Reyna Huaymacari, Cecilia Ballón Falcón, Ted R. Feldpausch, Varun Swamy, Julio M. Grandez Rios, Manuel J. Macía
Several studies have documented dominance by few species in Amazonian forests. Dominant species tend to be either locally abundant (local dominants) or regionally frequent (widespread dominants) but rarely both (oligarchs). Here, we explore relationships between dominance and functional traits. We ask whether: (i) dominance is associated with specific functional profiles and (ii) dominance patterns (local vs. widespread dominants) are associated with different functional traits. We combined census data from 503 forest inventory plots across four lowland forest habitats in western Amazonia with trait information for ~2600 tree species, encompassing data collected in the focal plots and data from published sources. We considered traits that relate to leaf, wood, seed and whole‐plant strategies: specific leaf area (SLA), leaf area (LA), N content per unit leaf mass (LN), wood density (WD), seed mass (SM) and maximum diameter at breast height (DBH max ). Our results reveal that dominant species display different trait combinations depending on the habitat type. Taller dominant species exhibit higher regional frequency, associated with higher dispersal ability and lower local abundance, likely due to negative density dependence. Greater SM contributes to higher regional frequency of dominant species via greater dispersal by birds and mammals and seedling survival. Finally, traits related to resource conservation strategies, such as lower SLA, LA, LN and greater WD, favour higher local densities across most habitats, while the opposite pattern was linked to higher regional frequency. Synthesis . Our findings reveal that (i) dominance is associated with different functional traits depending on the habitat type, and (ii) different functional trait values define distinct dominance patterns. Our study exemplifies the potential of trait‐based approaches to illuminate the ecological mechanisms that may underlie dominance in tropical forests. Finally, accounting for both local abundance and regional frequency when studying dominance is likely to improve our understanding and forecasting of how different species will respond to global change drivers in western Amazonia.
一些研究记录了亚马逊森林中少数物种的优势。优势种要么是本地丰富的(本地优势种),要么是区域频繁的(广泛优势种),但很少两者兼而有之(寡头)。在这里,我们探讨了优势和功能特征之间的关系。我们的问题是:(i)优势是否与特定的功能特征有关;(ii)优势模式(局部优势与广泛优势)是否与不同的功能特征有关。我们将亚马逊西部4个低地森林栖息地的503个森林清查样地的普查数据与约2600种树种的性状信息结合起来,包括重点样地收集的数据和已发表的数据。我们考虑了与叶片、木材、种子和整株策略相关的性状:比叶面积(SLA)、叶面积(LA)、单位叶质量含氮量(LN)、木材密度(WD)、种子质量(SM)和胸径最大(DBH max)。结果表明,不同生境类型的优势种表现出不同的性状组合。较高的优势种表现出较高的区域频率,与较高的扩散能力和较低的局部丰度相关,可能是由于负密度依赖关系。较高的SM通过鸟类和哺乳动物的传播和幼苗存活率提高了优势种的区域频率。最后,与资源保护策略相关的特征,如较低的SLA、LA、LN和较大的WD,在大多数生境中有利于较高的局部密度,而相反的模式与较高的区域频率有关。合成。结果表明:(1)不同生境类型的优势度与不同功能性状相关;(2)不同功能性状值定义不同的优势度模式。我们的研究举例说明了基于性状的方法在阐明热带森林优势的生态机制方面的潜力。最后,在研究优势度时,考虑本地丰度和区域频率可能会提高我们对亚马逊西部不同物种如何响应全球变化驱动因素的理解和预测。
{"title":"Species functional traits affect regional and local dominance across western Amazonian forests","authors":"Laura Matas‐Granados, Claire Fortunel, Luis Cayuela, Julia G. de Aledo, Celina Ben Saadi, Nathan J. B. Kraft, Christopher Baraloto, S. Joseph Wright, Jason Vleminckx, Nancy C. Garwood, Peter Hietz, Margaret R. Metz, Frederick C. Draper, Timothy R. Baker, Oliver L. Phillips, Eurídice N. Honorio Coronado, Kalle Ruokolainen, Roosevelt García‐Villacorta, Katherine H. Roucoux, Maximilien Guèze, Elvis Valderrama Sandoval, Paul V. A. Fine, Carlos A. Amasifuen Guerra, Ricardo Zarate Gomez, Pablo R. Stevenson, Abel Monteagudo‐Mendoza, Rodolfo Vasquez Martinez, John Terborgh, Mathias Disney, Roel Brienen, Percy Núñez Vargas, Jhon del Aguila Pasquel, Yadvinder Malhi, Jacob B. Socolar, Gerardo Flores Llampazo, Jim Vega Arenas, Darcy Galiano Cabrera, Javier Silva Espejo, Joey Talbot, Barbara Vinceti, José Reyna Huaymacari, Cecilia Ballón Falcón, Ted R. Feldpausch, Varun Swamy, Julio M. Grandez Rios, Manuel J. Macía","doi":"10.1111/1365-2745.70214","DOIUrl":"https://doi.org/10.1111/1365-2745.70214","url":null,"abstract":"<jats:list> <jats:list-item> Several studies have documented dominance by few species in Amazonian forests. Dominant species tend to be either locally abundant (local dominants) or regionally frequent (widespread dominants) but rarely both (oligarchs). Here, we explore relationships between dominance and functional traits. We ask whether: (i) dominance is associated with specific functional profiles and (ii) dominance patterns (local vs. widespread dominants) are associated with different functional traits. </jats:list-item> <jats:list-item> We combined census data from 503 forest inventory plots across four lowland forest habitats in western Amazonia with trait information for ~2600 tree species, encompassing data collected in the focal plots and data from published sources. We considered traits that relate to leaf, wood, seed and whole‐plant strategies: specific leaf area (SLA), leaf area (LA), N content per unit leaf mass (LN), wood density (WD), seed mass (SM) and maximum diameter at breast height (DBH <jats:sub>max</jats:sub> ). </jats:list-item> <jats:list-item> Our results reveal that dominant species display different trait combinations depending on the habitat type. Taller dominant species exhibit higher regional frequency, associated with higher dispersal ability and lower local abundance, likely due to negative density dependence. Greater SM contributes to higher regional frequency of dominant species via greater dispersal by birds and mammals and seedling survival. Finally, traits related to resource conservation strategies, such as lower SLA, LA, LN and greater WD, favour higher local densities across most habitats, while the opposite pattern was linked to higher regional frequency. </jats:list-item> <jats:list-item> <jats:italic>Synthesis</jats:italic> . Our findings reveal that (i) dominance is associated with different functional traits depending on the habitat type, and (ii) different functional trait values define distinct dominance patterns. Our study exemplifies the potential of trait‐based approaches to illuminate the ecological mechanisms that may underlie dominance in tropical forests. Finally, accounting for both local abundance and regional frequency when studying dominance is likely to improve our understanding and forecasting of how different species will respond to global change drivers in western Amazonia. </jats:list-item> </jats:list>","PeriodicalId":191,"journal":{"name":"Journal of Ecology","volume":"22 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2025-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145711446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interactions between beneficial fungi and plant silicon: A review 有益真菌与植物硅的相互作用研究进展
IF 5.5 1区 环境科学与生态学 Q1 ECOLOGY Pub Date : 2025-12-08 DOI: 10.1111/1365-2745.70207
Ramalka Heshani Kasige, Ximena Cibils-Stewart, Adam Frew, Scott Nicholas Johnson

CONFLICT OF INTEREST STATEMENT

The authors declare no conflict of interest.

利益冲突声明作者声明无利益冲突。
{"title":"Interactions between beneficial fungi and plant silicon: A review","authors":"Ramalka Heshani Kasige, Ximena Cibils-Stewart, Adam Frew, Scott Nicholas Johnson","doi":"10.1111/1365-2745.70207","DOIUrl":"https://doi.org/10.1111/1365-2745.70207","url":null,"abstract":"<h2> CONFLICT OF INTEREST STATEMENT</h2>\u0000<p>The authors declare no conflict of interest.</p>","PeriodicalId":191,"journal":{"name":"Journal of Ecology","volume":"127 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2025-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145697002","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Leaf nitrogen and wood density, but not root traits, explain the growth and survival of temperate tree species 叶片氮和木材密度,而不是根系特征,解释温带树种的生长和生存
IF 5.5 1区 环境科学与生态学 Q1 ECOLOGY Pub Date : 2025-12-08 DOI: 10.1111/1365-2745.70212
Monique Weemstra, Jenny Zambrano, David Bauman, Claire Fortunel, María Natalia Umaña
<h2>1 INTRODUCTION</h2><p>Across life forms, a trade-off exists between the growth and survival rates of species (Grime, <span>1977</span>; Stearns, <span>1992</span>). This demographic trade-off implies that species allocate resources either to fast growth on productive sites, or to high survival in adverse environments, constraining the suite of adaptive life-history strategies available to organisms (Stearns, <span>1992</span>). It has been found to explain plant species coexistence and biodiversity (Baraloto et al., <span>2005</span>; Kitajima & Poorter, <span>2008</span>; Tilman, <span>2004</span>), succession (Kobe, <span>1999</span>) and community dynamics (Rüger et al., <span>2020</span>; Russo et al., <span>2020</span>). Studies often deduce the underlying principles of these different demographic strategies from interspecific variation in traits, but virtually all of these studies include only above-ground traits (Fan et al., <span>2022</span>; Iida et al., <span>2023</span>; Janse-Ten Klooster et al., <span>2007</span>; Jiang & Jin, <span>2021</span>; Kunstler et al., <span>2016</span>; Martínez-Vilalta et al., <span>2010</span>; Poorter et al., <span>2008</span>; Russo et al., <span>2007</span>; Wright et al., <span>2010</span>; but see Ren et al., <span>2023</span>). Since tree performance depends on the interdependent functioning of above- and below-ground organs, ecological research is in dire need of whole-tree approaches towards grasping growth and survival (Weemstra, Kuyper, et al., <span>2022</span>; Weigelt et al., <span>2021</span>).</p><p>The growth and survival of species is generally associated with variation in traits that reflect plants' capacities to acquire and conserve resources (Fan et al., <span>2022</span>; Iida et al., <span>2023</span>; Janse-Ten Klooster et al., <span>2007</span>; Martínez-Vilalta et al., <span>2010</span>; McMahon et al., <span>2011</span>; Poorter et al., <span>2008</span>; Westoby & Wright, <span>2006</span>). Inherently fast-growing species with acquisitive resource strategies are characterized by leaf and stem traits that promote carbon (C) gain and growth on resource-rich sites (e.g. high specific leaf area [SLA; leaf area per unit leaf dry mass], high leaf nitrogen [N] concentrations and low wood density [WD]). As these traits offer little protection against (a)biotic stressors, they reduce species' survival in low-resource environments (Aerts & Chapin, <span>2000</span>; Grime et al., <span>1997</span>; Poorter & Garnier, <span>2007</span>; Reich et al., <span>1992</span>). In contrast, inherently slow-growing species with a conservative resource strategy are equipped with thick, small and dense leaves and dense wood with high concentrations of secondary compounds. These traits improve drought resistance, mechanical strength and defence against pathogen attack (Ackerly, <span>2004</span>; Chave et al., <span>2009</span>; Hacke et al., <span>2001</span>; Zanne et al.
在所有生命形式中,物种的生长和存活率之间存在着一种权衡(Grime, 1977; Stearns, 1992)。这种人口平衡意味着,物种将资源分配给生产场所的快速生长,或在不利环境下的高存活率,从而限制了生物体可用的适应性生活史策略(Stearns, 1992)。它被发现可以解释植物物种共存和生物多样性(Baraloto et al., 2005; Kitajima & & Poorter, 2008; Tilman, 2004)、演替(Kobe, 1999)和群落动态(r<s:1> ger et al., 2020; Russo et al., 2020)。研究经常从性状的种间变异推断出这些不同人口策略的基本原理,但几乎所有这些研究都只包括地上性状(Fan等人,2022;Iida等人,2023;jansen - ten Klooster等人,2007;Jiang等人;Jin, 2021; Kunstler等人,2016;Martínez-Vilalta等人,2010;Poorter等人,2008;Russo等人,2007;Wright等人,2010;但参见Ren等人,2023)。由于树木的性能取决于地上和地下器官的相互依存功能,生态学研究迫切需要全树方法来掌握生长和生存(Weemstra, Kuyper, et al., 2022; Weigelt et al., 2021)。物种的生长和生存通常与反映植物获取和保存资源能力的性状变异有关(Fan等人,2022;Iida等人,2023;jansen - ten Klooster等人,2007;Martínez-Vilalta等人,2010;McMahon等人,2011;Poorter等人,2008;Westoby等人,2006)。具有获取资源策略的速生物种具有促进碳(C)获取和资源丰富地点生长的叶片和茎性状(如高比叶面积[SLA;单位叶干质量叶面积],高叶氮[N]浓度和低木材密度[WD])。由于这些性状对(a)生物压力源几乎没有保护作用,它们降低了物种在低资源环境中的生存(Aerts & Chapin, 2000; Grime等,1997;Poorter & Garnier, 2007; Reich等,1992)。相比之下,生性生长缓慢且资源策略保守的树种具有厚、小、密的叶片和密集的木材,具有高浓度的次生化合物。这些性状提高了抗旱性、机械强度和对病原体攻击的防御能力(Ackerly, 2004; Chave等人,2009;hack等人,2001;Zanne等人,2010),并提高了树木的存活率,但以牺牲资源获取和生长为代价。虽然这些机制基础已经很好地建立起来,但不同的研究已经确定了各种特征作为人口权衡的最佳预测因素,而且它们的预测能力总体上很低(Chave等人,2009;Iida等人;Swenson, 2020; Paine等人,2015;Poorter等人,2008;Swenson等人,2020;Umaña等人,2023;Yang等人,2018)。从性状对树木生长和存活的一般较弱的可预测性可能部分归因于人口统计学研究中缺乏地下性状。吸收根(以下简称“根”)通过获取必需的土壤资源和对地上和地下拮抗物提供保护,对树木的生长和生存起着重要的作用,但在研究树木生长和生存的研究中很大程度上缺乏。通常预测根系性状与树木性能之间的关系遵循地上观察到的资源获取与保护之间的权衡(Reich, 2014)。例如,与高SLA类似,高比根长(SRL,单位根质量根长)意味着在相对较低的生物量投资下具有较大的根表面积,从而允许有效的土壤资源吸收和快速的树木生长。与高叶氮平行,高根氮有望反映与养分获取相关的快速代谢,促进树木生长(Reich, 2014)。反过来,低SRL和高根组织密度(RTD,根体积根质量)的粗根通常寿命长(McCormack et al., 2012; Weemstra et al., 2016),这被认为有助于长期资源保护,从而有助于树种的抗逆性和生存。然而,这些假设缺乏经验证据的支持,根系性状与树木人口统计学之间的关系也没有得到很好的确立。例如,虽然资源经济学理论将高根直径定义为保守性状,但粗根可能拥有更丰富的(丛枝)菌根真菌(Ma et al., 2018),这可以改善土壤资源获取,从而促进树木生长。此外,在一些研究中,跨物种的高SRL对应于更快的树木生长(Comas et al., 2002; Comas & Eissenstat, 2004; Reich et al., 1998),但在其他研究中没有(McCormack et al., 2012; Weemstra et al.)。 (Comas et al., 2002; Comas & Eissenstat, 2004; McCormack et al., 2012)。此外,很少有研究,研究了根人口统计学特征与树很难比较和一般模式来自因为他们测量幼苗(如昏迷et al ., 2002;帝国et al ., 1998),和/或使用树木生长的间接措施,如模型估计(Weemstra et al ., 2020),或一般物种的分类速度和增长缓慢(昏迷et al ., 2002)(但看到任正非et al ., 2023),而且很少量化树生存(见了et al .(2023))。显然,根系性状在树种人口统计学中的作用在森林生态学中存在很大的知识缺口。本研究采用全树方法评估性状对美国东北部温带树种生长和存活的影响。树种的生长、生存和生活史是其获取、保存和交换地上和地下资源的能力的功能。因此,在研究树木人口统计学时,叶、茎和根共同驱动性能,而不是作为孤立的器官,它们的影响应该被统一考虑。我们的特征人口统计学假设在方法S1中有更详细的解释,并在图S1中可视化;综上所述,我们假设与快速资源吸收相关的性状,即高叶片和根N,高SLA和SRL,导致物种间更高的生长速率。此外,由于低WD在给定的生长量(茎直径)下会导致较低的C投资,因此该性状也与快速生长有关。相反,通过增强对(a)生物胁迫(即根和叶的低氮浓度,低SLA和SRL,高WD)的耐受性来减少资源损失的性状应该会导致更高的存活率。如上所述,我们没有假设或测试根直径对树木生长和存活的直接影响,因为它在资源获取和保护方面可能具有截然不同的作用(方法1)。我们进一步预计,在有利条件下快速生长的物种在不利环境下的存活率较低,这代表了种间的人口统计学权衡,因为假设单个性状对资源吸收和损失的相反影响,从而影响生长和生存。
{"title":"Leaf nitrogen and wood density, but not root traits, explain the growth and survival of temperate tree species","authors":"Monique Weemstra, Jenny Zambrano, David Bauman, Claire Fortunel, María Natalia Umaña","doi":"10.1111/1365-2745.70212","DOIUrl":"https://doi.org/10.1111/1365-2745.70212","url":null,"abstract":"&lt;h2&gt;1 INTRODUCTION&lt;/h2&gt;\u0000&lt;p&gt;Across life forms, a trade-off exists between the growth and survival rates of species (Grime, &lt;span&gt;1977&lt;/span&gt;; Stearns, &lt;span&gt;1992&lt;/span&gt;). This demographic trade-off implies that species allocate resources either to fast growth on productive sites, or to high survival in adverse environments, constraining the suite of adaptive life-history strategies available to organisms (Stearns, &lt;span&gt;1992&lt;/span&gt;). It has been found to explain plant species coexistence and biodiversity (Baraloto et al., &lt;span&gt;2005&lt;/span&gt;; Kitajima &amp; Poorter, &lt;span&gt;2008&lt;/span&gt;; Tilman, &lt;span&gt;2004&lt;/span&gt;), succession (Kobe, &lt;span&gt;1999&lt;/span&gt;) and community dynamics (Rüger et al., &lt;span&gt;2020&lt;/span&gt;; Russo et al., &lt;span&gt;2020&lt;/span&gt;). Studies often deduce the underlying principles of these different demographic strategies from interspecific variation in traits, but virtually all of these studies include only above-ground traits (Fan et al., &lt;span&gt;2022&lt;/span&gt;; Iida et al., &lt;span&gt;2023&lt;/span&gt;; Janse-Ten Klooster et al., &lt;span&gt;2007&lt;/span&gt;; Jiang &amp; Jin, &lt;span&gt;2021&lt;/span&gt;; Kunstler et al., &lt;span&gt;2016&lt;/span&gt;; Martínez-Vilalta et al., &lt;span&gt;2010&lt;/span&gt;; Poorter et al., &lt;span&gt;2008&lt;/span&gt;; Russo et al., &lt;span&gt;2007&lt;/span&gt;; Wright et al., &lt;span&gt;2010&lt;/span&gt;; but see Ren et al., &lt;span&gt;2023&lt;/span&gt;). Since tree performance depends on the interdependent functioning of above- and below-ground organs, ecological research is in dire need of whole-tree approaches towards grasping growth and survival (Weemstra, Kuyper, et al., &lt;span&gt;2022&lt;/span&gt;; Weigelt et al., &lt;span&gt;2021&lt;/span&gt;).&lt;/p&gt;\u0000&lt;p&gt;The growth and survival of species is generally associated with variation in traits that reflect plants' capacities to acquire and conserve resources (Fan et al., &lt;span&gt;2022&lt;/span&gt;; Iida et al., &lt;span&gt;2023&lt;/span&gt;; Janse-Ten Klooster et al., &lt;span&gt;2007&lt;/span&gt;; Martínez-Vilalta et al., &lt;span&gt;2010&lt;/span&gt;; McMahon et al., &lt;span&gt;2011&lt;/span&gt;; Poorter et al., &lt;span&gt;2008&lt;/span&gt;; Westoby &amp; Wright, &lt;span&gt;2006&lt;/span&gt;). Inherently fast-growing species with acquisitive resource strategies are characterized by leaf and stem traits that promote carbon (C) gain and growth on resource-rich sites (e.g. high specific leaf area [SLA; leaf area per unit leaf dry mass], high leaf nitrogen [N] concentrations and low wood density [WD]). As these traits offer little protection against (a)biotic stressors, they reduce species' survival in low-resource environments (Aerts &amp; Chapin, &lt;span&gt;2000&lt;/span&gt;; Grime et al., &lt;span&gt;1997&lt;/span&gt;; Poorter &amp; Garnier, &lt;span&gt;2007&lt;/span&gt;; Reich et al., &lt;span&gt;1992&lt;/span&gt;). In contrast, inherently slow-growing species with a conservative resource strategy are equipped with thick, small and dense leaves and dense wood with high concentrations of secondary compounds. These traits improve drought resistance, mechanical strength and defence against pathogen attack (Ackerly, &lt;span&gt;2004&lt;/span&gt;; Chave et al., &lt;span&gt;2009&lt;/span&gt;; Hacke et al., &lt;span&gt;2001&lt;/span&gt;; Zanne et al.","PeriodicalId":191,"journal":{"name":"Journal of Ecology","volume":"33 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2025-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145697020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microplastic and drought influence the positive effect of plant diversity on plant biomass production 微塑料和干旱影响了植物多样性对植物生物量生产的积极作用
IF 5.5 1区 环境科学与生态学 Q1 ECOLOGY Pub Date : 2025-12-07 DOI: 10.1111/1365-2745.70217
Jing Man, Bo Tang, Yudi M. Lozano, Matthias C. Rillig
<h2>1 INTRODUCTION</h2><p>Microplastic pollution stands out as one of the most pervasive and enduring anthropogenic global change factors, having garnered recognition as a concern in biodiversity conservation efforts for terrestrial ecosystems (Bank et al., <span>2022</span>; de Souza Machado, Kloas, et al., <span>2018</span>; Rillig et al., <span>2023</span>). Microplastic particles, polymers (and their chemical additives) with a diameter smaller than 5 mm, can enter soil via atmospheric deposition, amendments, mulching and irrigation (Blasing & Amelung, <span>2018</span>; Brahney et al., <span>2020</span>). There is evidence highlighting the impact of microplastic on soil biophysical properties, such as water-holding capacity, aggregation and soil biota (de Souza Machado, Lau, et al., <span>2018</span>; Lehmann et al., <span>2019</span>; Liu, Feng, et al., <span>2023</span>), as well as their consequences on plant performance (Jia et al., <span>2023</span>; Rillig et al., <span>2019</span>). Understanding the latter is vital because plants play a key role in maintaining productivity and overall ecosystem functionality (Houghton et al., <span>2009</span>). The effects of microplastic on plant biomass have been extensively studied at the individual species level, with reported responses varying from negative to positive in species such as <i>Plantago lanceolata</i>, <i>Trifolium repens</i>, <i>Triticum aestivum</i>, <i>Lolium perenne</i> and <i>Daucus carota</i> (Fu et al., <span>2024</span>; Judy et al., <span>2019</span>; Lozano, Lehnert, et al., <span>2021</span>; van Kleunen et al., <span>2019</span>). These studies have paved the way for understanding how microplastic affects plants. However, the field is still in its infancy, as in natural ecosystems such as grassland, diverse plant species typically coexist and interact. To date, studies investigating the effects of microplastic on plant communities are comparatively rare (Xu et al., <span>2024</span>; Yu et al., <span>2021</span>), highlighting the urgent need to understand microplastic impacts at the plant community level. A recent study found that adding microplastic to soil increased the biomass of <i>Hieracium pilosella</i> (forb) but decreased that of <i>Festuca brevipila</i> (grass) within a mixed plant community (Lozano & Rillig, <span>2020</span>). Similarly, He, Yao, et al. (<span>2024</span>) reported that different plant species in an experimental grass–forb mixture community showed varying degrees of change in abundance following microplastic addition. Therefore, the varied responses of different species or plant functional groups, which are groups of species with similar ecological strategies such as grasses, forbs and legumes (Díaz & Cabido, <span>2001</span>; McLaren & Turkington, <span>2010</span>), to microplastic addition have the potential to affect plant community composition and plant diversity.</p><p>Plant diversity is crucial for maintaining ecosys
微塑料污染是最普遍和持久的人为全球变化因素之一,已成为陆地生态系统生物多样性保护工作的关注焦点(Bank等人,2022;de Souza Machado, Kloas等人,2018;Rillig等人,2023)。直径小于5mm的微塑料颗粒、聚合物(及其化学添加剂)可以通过大气沉降、修正、覆盖和灌溉进入土壤(Blasing & Amelung, 2018; Brahney et al., 2020)。有证据强调了微塑料对土壤生物物理特性的影响,如持水能力、聚集性和土壤生物群(de Souza Machado, Lau等,2018;Lehmann等,2019;Liu, Feng等,2023),以及它们对植物性能的影响(Jia等,2023;Rillig等,2019)。了解后者至关重要,因为植物在维持生产力和整体生态系统功能方面发挥着关键作用(Houghton et al., 2009)。微塑料对植物生物量的影响已在单个物种水平上进行了广泛研究,据报道,在车前草(Plantago lanceolata)、三叶草(Trifolium repens)、小麦(Triticum aestivum)、多年生Lolium perenne和胡萝卜(Daucus carota)等物种中,反应从阴性到阳性不等(Fu等人,2024;Judy等人,2019;Lozano, Lehnert等人,2021;van Kleunen等人,2019)。这些研究为理解微塑料如何影响植物铺平了道路。然而,该领域仍处于起步阶段,因为在草原等自然生态系统中,不同的植物物种通常共存并相互作用。迄今为止,研究微塑料对植物群落影响的研究相对较少(Xu et al., 2024; Yu et al., 2021),这凸显了在植物群落水平上了解微塑料影响的迫切需要。最近的一项研究发现,在混合植物群落中,向土壤中添加微塑料增加了Hieracium pilosella(草本)的生物量,但减少了Festuca brevipila(草)的生物量(Lozano & Rillig, 2020)。同样,He, Yao等(2024)报道了草草混合群落中不同植物种类在添加微塑料后丰度发生不同程度的变化。因此,不同的物种或植物功能类群,即具有相似生态策略的物种类群,如草、forbs和豆科植物(Díaz & Cabido, 2001; McLaren & Turkington, 2010)对微塑料添加的不同反应有可能影响植物群落组成和植物多样性。植物多样性对于维持生态系统功能、减轻干旱等全球变化因素的影响以及确保生态系统稳定至关重要(Hooper et al., 2012; Tilman et al., 2014)。越来越多的证据表明,植物多样性可以增强生态系统功能,如植物生产力(Cardinale等,2012;Loreau等,2021)。互补效应(CE)和选择效应(SE)是解释这种积极关系的两种潜在机制(Loreau & Hector, 2001)。当一个群落内不同的植物物种或功能群以提高整体生产力的方式相互补充时,就会出现正生产力。其中包括生态位分化,通过更有效和完全地利用现有资源来减少种间竞争,以及促进作用,一些物种因此改善资源可用性或减轻其邻居的环境压力(Barry等人,2019;Fagundes等人,2023)。相反,当单作生物量大的物种不成比例地提高生产力时,SE值为正。CE和SE也可能出现阴性。当干扰竞争或拮抗相互作用超过生态位分化的积极作用时,就会出现负生态环境效应。当生产力较低的物种在群落中占主导地位时,就会出现负SE,从而降低整体生产力(Loreau et al., 2012)。然而,针对生物多样性效应及其机制的研究大多是在环境条件下进行的(Kuebbing et al., 2015; Wagg et al., 2022)。最近的研究表明,全球变化因素可能影响植物多样性与生产力之间的关系(He, Barry, et al., 2024; Hong et al., 2022; Shovon et al., 2024)。例如,干旱可能会加强植物多样性对地上生物量的积极影响,并增加CE的强度(Xi et al., 2022)。目前,还没有直接证据表明微塑料是否以及如何影响植物多样性与生物量之间的关系。尽管如此,对植物群落的研究表明,微塑料的添加可能会改变物种的优势,例如,减少Holcus lanatus(一种草)的优势,同时增加Hieracium pilosella(一种forb)的优势(Lozano & Rillig, 2020)。 此外,微塑料的添加可能会改变植物物种之间的种间相互作用,将它们从积极的联系转变为中性的联系(He, Yao, et al., 2024)。因此,可以预期,物种相互作用和优势的改变可能会影响互补和选择效应。因此,微塑料污染可能会改变植物多样性对生物量生产的影响,这取决于它对互补和选择效应的影响程度。如果微塑料抑制了植物多样性对生态系统功能的积极影响,这将对生态系统管理和我们对生物多样性-生态系统功能关系的理论理解产生重要影响。鉴于目前缺乏经验证据,有必要探讨微塑料如何影响植物多样性与生物量之间的关系,以及潜在的生物多样性效应。最近的研究表明,微塑料,如微塑料纤维,可以改变土壤水分动态,从而可能减轻或加剧干旱(de Souza Machado等人,2019;Lozano & Rillig, 2020)。干旱是最常被研究的全球变化因子之一,它影响植物群落组成和植物多样性-生产力关系(Chen et al., 2022; ezez et al., 2017; Hoover et al., 2014),对豆科植物和草本植物的抑制作用往往大于对禾草的抑制作用(Carlsson et al., 2017; Stampfli et al., 2018; Wu et al., 2019)。这些发现表明,微塑料可能与干旱相互作用,影响不同的植物功能群,从而影响植物群落组成和植物多样性-生产力关系。事实上,研究表明微塑料可以与干旱相互作用,影响土壤生物群,如微食物网和真菌群落(Liu, Wang, & Zhu, 2023; Lozano et al., 2024)。然而,微塑料和干旱共同作用对植物群落和生物多样性的影响在很大程度上仍不清楚。解决这些影响至关重要,因为了解微塑料和干旱对植物多样性-生产力关系的共同影响以及任何潜在机制可以帮助我们全面解决和管理生物多样性和生态系统功能的风险(Naeem等人,2012;Sigmund等人,2022)。在这里,我们进行了温室实验使用16个物种的实验从池中植物群落组装属于三官能团(如草,福布斯和豆类)来创建一个梯度的植物多样性与1,2,4,8和16个植物物种,受到四个塑料微粒(MP)×干旱(D)场景:控制(没有议员,富水),MP(只有MP,富水),D (D,没有国会议员)和国会议员和D治疗(MP + D)。我们旨在探讨微塑料和干旱是否以及如何影响植物多样性与植物生物量生产的关系,以及它们对生物多样性效应的影响。我们测量了地上和地下生物量,并
{"title":"Microplastic and drought influence the positive effect of plant diversity on plant biomass production","authors":"Jing Man, Bo Tang, Yudi M. Lozano, Matthias C. Rillig","doi":"10.1111/1365-2745.70217","DOIUrl":"https://doi.org/10.1111/1365-2745.70217","url":null,"abstract":"&lt;h2&gt;1 INTRODUCTION&lt;/h2&gt;\u0000&lt;p&gt;Microplastic pollution stands out as one of the most pervasive and enduring anthropogenic global change factors, having garnered recognition as a concern in biodiversity conservation efforts for terrestrial ecosystems (Bank et al., &lt;span&gt;2022&lt;/span&gt;; de Souza Machado, Kloas, et al., &lt;span&gt;2018&lt;/span&gt;; Rillig et al., &lt;span&gt;2023&lt;/span&gt;). Microplastic particles, polymers (and their chemical additives) with a diameter smaller than 5 mm, can enter soil via atmospheric deposition, amendments, mulching and irrigation (Blasing &amp; Amelung, &lt;span&gt;2018&lt;/span&gt;; Brahney et al., &lt;span&gt;2020&lt;/span&gt;). There is evidence highlighting the impact of microplastic on soil biophysical properties, such as water-holding capacity, aggregation and soil biota (de Souza Machado, Lau, et al., &lt;span&gt;2018&lt;/span&gt;; Lehmann et al., &lt;span&gt;2019&lt;/span&gt;; Liu, Feng, et al., &lt;span&gt;2023&lt;/span&gt;), as well as their consequences on plant performance (Jia et al., &lt;span&gt;2023&lt;/span&gt;; Rillig et al., &lt;span&gt;2019&lt;/span&gt;). Understanding the latter is vital because plants play a key role in maintaining productivity and overall ecosystem functionality (Houghton et al., &lt;span&gt;2009&lt;/span&gt;). The effects of microplastic on plant biomass have been extensively studied at the individual species level, with reported responses varying from negative to positive in species such as &lt;i&gt;Plantago lanceolata&lt;/i&gt;, &lt;i&gt;Trifolium repens&lt;/i&gt;, &lt;i&gt;Triticum aestivum&lt;/i&gt;, &lt;i&gt;Lolium perenne&lt;/i&gt; and &lt;i&gt;Daucus carota&lt;/i&gt; (Fu et al., &lt;span&gt;2024&lt;/span&gt;; Judy et al., &lt;span&gt;2019&lt;/span&gt;; Lozano, Lehnert, et al., &lt;span&gt;2021&lt;/span&gt;; van Kleunen et al., &lt;span&gt;2019&lt;/span&gt;). These studies have paved the way for understanding how microplastic affects plants. However, the field is still in its infancy, as in natural ecosystems such as grassland, diverse plant species typically coexist and interact. To date, studies investigating the effects of microplastic on plant communities are comparatively rare (Xu et al., &lt;span&gt;2024&lt;/span&gt;; Yu et al., &lt;span&gt;2021&lt;/span&gt;), highlighting the urgent need to understand microplastic impacts at the plant community level. A recent study found that adding microplastic to soil increased the biomass of &lt;i&gt;Hieracium pilosella&lt;/i&gt; (forb) but decreased that of &lt;i&gt;Festuca brevipila&lt;/i&gt; (grass) within a mixed plant community (Lozano &amp; Rillig, &lt;span&gt;2020&lt;/span&gt;). Similarly, He, Yao, et al. (&lt;span&gt;2024&lt;/span&gt;) reported that different plant species in an experimental grass–forb mixture community showed varying degrees of change in abundance following microplastic addition. Therefore, the varied responses of different species or plant functional groups, which are groups of species with similar ecological strategies such as grasses, forbs and legumes (Díaz &amp; Cabido, &lt;span&gt;2001&lt;/span&gt;; McLaren &amp; Turkington, &lt;span&gt;2010&lt;/span&gt;), to microplastic addition have the potential to affect plant community composition and plant diversity.&lt;/p&gt;\u0000&lt;p&gt;Plant diversity is crucial for maintaining ecosys","PeriodicalId":191,"journal":{"name":"Journal of Ecology","volume":"4 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2025-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145697004","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Flower–leaf sequence shapes plant phenological sensitivity to warming 花叶序列决定了植物对暖化的物候敏感性
IF 5.5 1区 环境科学与生态学 Q1 ECOLOGY Pub Date : 2025-12-07 DOI: 10.1111/1365-2745.70210
Xingli Xia, Fangxiu Wan, Wanying Cheng, Liming Yan, Songbo Tang, Huanjiong Wang, Junhu Dai, Jianyang Xia

CONFLICT OF INTEREST STATEMENT

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. Jianyang Xia is an Associate Editor of the Journal of Ecology, but took no part in the peer review and decision-making processes for this paper.

利益冲突声明作者声明,他们没有已知的竞争经济利益或个人关系,可能会影响本文所报道的工作。夏建阳,《生态学报》副主编,未参与论文的同行评议和决策过程。
{"title":"Flower–leaf sequence shapes plant phenological sensitivity to warming","authors":"Xingli Xia, Fangxiu Wan, Wanying Cheng, Liming Yan, Songbo Tang, Huanjiong Wang, Junhu Dai, Jianyang Xia","doi":"10.1111/1365-2745.70210","DOIUrl":"https://doi.org/10.1111/1365-2745.70210","url":null,"abstract":"<h2> CONFLICT OF INTEREST STATEMENT</h2>\u0000<p>The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. Jianyang Xia is an Associate Editor of the Journal of Ecology, but took no part in the peer review and decision-making processes for this paper.</p>","PeriodicalId":191,"journal":{"name":"Journal of Ecology","volume":"93 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2025-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145697005","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Facilitation and constraint: Wave exposure and intraspecific interactions influence mangrove seedling morphology and resistance to dislodgement 促进和约束:波浪暴露和种内相互作用影响红树林幼苗形态和对迁移的抗性
IF 5.5 1区 环境科学与生态学 Q1 ECOLOGY Pub Date : 2025-12-05 DOI: 10.1111/1365-2745.70215
Lukas Meysick, Julian Merder, Conrad Pilditch, Richard Bulmer, Christoffer Boström, Jack Hamilton, Karin Bryan, Carolyn Lundquist
Understanding the factors controlling mangrove seedling establishment is essential for maintaining forests and restoration under changing environmental conditions. While adaptive strategies and plasticity in seedling biomass allocation are expected along hydrodynamic gradients, there is little information on how this is modulated by the interplay between intraspecific facilitation (e.g. wave attenuation, anchoring by roots of adult trees) and competition (e.g. light limitation, space competition). We conducted a field study across 12 sites (in nine estuaries) that spanned a gradient in wave exposure, to examine how mangrove seedling abundance, removal force and biomass allocation varied across three habitat types—mangrove forest, pneumatophore zone and unvegetated intertidal flat. Seedling removal force increased with root biomass and decreased with sediment mud content. Results also indicated strong intraspecific facilitation through adult root anchorage for early establishment of seedlings (where their root biomass <0.2–0.5 g ind −1 ). However, the stabilizing effect of adult root biomass may be counterbalanced by increased light limitation, sediment accretion and competition with conspecifics, as indicated by stem etiolation. Under low wave exposure conditions, seedlings in the unvegetated intertidal flats were characterized by the highest leaf and lateral root biomass, while seedlings in the mangrove forest had the highest stem biomass and lowest stem width to stem height ratio, indicating divergent growth strategies shaped by local facilitation and competition dynamics. As wave exposure increased, all seedlings shifted investment towards below‐ground structures, particularly taproots, as well as towards shorter, thicker stems, indicating morphological convergence across habitats under high environmental stress. Synthesis . Our findings highlight the dual influence of intraspecific interactions and environmental constraints in shaping seedling morphology. While facilitation promotes seedling stability in the mangrove habitat, resource (light) limitation likely drives stem etiolation. Ultimately, wave exposure imposes functional convergence in biomass allocation across habitats. This shift underscores the dominant role of physical stress in structuring early biomass allocation strategies. These insights enhance our understanding of mangrove seedling responses to environmental gradients and inform conservation strategies in dynamic coastal systems.
了解控制红树林幼苗形成的因素,对于在变化的环境条件下维持和恢复红树林至关重要。虽然幼苗生物量分配的适应性策略和可塑性是沿着水动力梯度进行的,但关于这是如何通过种内促进(如波衰减,成年树的根锚定)和竞争(如光限制,空间竞争)之间的相互作用进行调节的信息很少。我们在12个地点(9个河口)进行了一项实地研究,这些地点跨越了波浪暴露的梯度,以研究红树林幼苗丰度、迁移力和生物量分配在三种栖息地类型(红树林、气团带和无植被的潮间带)中的变化。拔苗力随根系生物量的增加而增大,随泥沙含量的增加而减小。结果还表明,通过成体根锚对幼苗的早期建立具有很强的种内促进作用(其根生物量为0.2-0.5 g,−1)。然而,如茎黄化所示,成年根生物量的稳定作用可能被增加的光照限制、沉积物增加和与同种植物的竞争所抵消。低波暴露条件下,无植被潮间带的幼苗叶片和侧根生物量最高,而红树林的幼苗茎生物量最高,茎宽高比最低,表明受局部促进和竞争动态的影响,幼苗的生长策略存在差异。随着波浪暴露的增加,所有幼苗都将投资转向地下结构,特别是主根,以及更短、更粗的茎,这表明在高环境胁迫下,不同栖息地的形态趋同。合成。我们的研究结果强调了种内相互作用和环境约束在塑造幼苗形态中的双重影响。虽然促进促进了红树林生境中幼苗的稳定性,但资源(光)限制可能会导致茎黄化。最终,波浪暴露在不同栖息地的生物量分配中施加了功能收敛。这种转变强调了物理压力在构建早期生物量分配策略中的主导作用。这些见解增强了我们对红树林幼苗对环境梯度的反应的理解,并为动态海岸系统的保护策略提供了信息。
{"title":"Facilitation and constraint: Wave exposure and intraspecific interactions influence mangrove seedling morphology and resistance to dislodgement","authors":"Lukas Meysick, Julian Merder, Conrad Pilditch, Richard Bulmer, Christoffer Boström, Jack Hamilton, Karin Bryan, Carolyn Lundquist","doi":"10.1111/1365-2745.70215","DOIUrl":"https://doi.org/10.1111/1365-2745.70215","url":null,"abstract":"<jats:list> <jats:list-item> Understanding the factors controlling mangrove seedling establishment is essential for maintaining forests and restoration under changing environmental conditions. While adaptive strategies and plasticity in seedling biomass allocation are expected along hydrodynamic gradients, there is little information on how this is modulated by the interplay between intraspecific facilitation (e.g. wave attenuation, anchoring by roots of adult trees) and competition (e.g. light limitation, space competition). </jats:list-item> <jats:list-item> We conducted a field study across 12 sites (in nine estuaries) that spanned a gradient in wave exposure, to examine how mangrove seedling abundance, removal force and biomass allocation varied across three habitat types—mangrove forest, pneumatophore zone and unvegetated intertidal flat. </jats:list-item> <jats:list-item> Seedling removal force increased with root biomass and decreased with sediment mud content. Results also indicated strong intraspecific facilitation through adult root anchorage for early establishment of seedlings (where their root biomass &lt;0.2–0.5 g ind <jats:sup>−1</jats:sup> ). However, the stabilizing effect of adult root biomass may be counterbalanced by increased light limitation, sediment accretion and competition with conspecifics, as indicated by stem etiolation. Under low wave exposure conditions, seedlings in the unvegetated intertidal flats were characterized by the highest leaf and lateral root biomass, while seedlings in the mangrove forest had the highest stem biomass and lowest stem width to stem height ratio, indicating divergent growth strategies shaped by local facilitation and competition dynamics. As wave exposure increased, all seedlings shifted investment towards below‐ground structures, particularly taproots, as well as towards shorter, thicker stems, indicating morphological convergence across habitats under high environmental stress. </jats:list-item> <jats:list-item> <jats:italic>Synthesis</jats:italic> . Our findings highlight the dual influence of intraspecific interactions and environmental constraints in shaping seedling morphology. While facilitation promotes seedling stability in the mangrove habitat, resource (light) limitation likely drives stem etiolation. Ultimately, wave exposure imposes functional convergence in biomass allocation across habitats. This shift underscores the dominant role of physical stress in structuring early biomass allocation strategies. These insights enhance our understanding of mangrove seedling responses to environmental gradients and inform conservation strategies in dynamic coastal systems. </jats:list-item> </jats:list>","PeriodicalId":191,"journal":{"name":"Journal of Ecology","volume":"33 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2025-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145673655","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Are diverse forests thirstier? A meta‐analysis reveals no evidence for a consistent effect of species or functional diversity on tree transpiration 多样的森林更渴吗?一项荟萃分析显示,没有证据表明物种或功能多样性对树木蒸腾有一致的影响
IF 5.5 1区 环境科学与生态学 Q1 ECOLOGY Pub Date : 2025-12-02 DOI: 10.1111/1365-2745.70211
Tanvir Ahmed Shovon, Nia Perron, Damien Bonal, Christian Messier, Audrey Maheu
Tree species diversity can enhance forest productivity and resistance to climate extremes but can also increase transpiration rates, potentially exacerbating drought stress. A large variability in the effect of tree diversity on transpiration is found in the literature, and we conducted a meta‐analysis to help better understand drivers of this variability. We computed effect sizes by comparing tree transpiration of mixed plots to monocultures from 31 studies. We calculated effect sizes at the species (comparison of trees of a given species in monoculture vs. mixed plots) and community (comparison of transpiration by all trees in monoculture vs. mixed plots) levels and assessed the influence of species richness, functional richness, water limitation (drought or regional aridity) and functional identity at the species level. Our meta‐analysis revealed no overall effect of species or functional diversity on transpiration at the species or community level, instead emphasizing the large variability in the magnitude and direction of effects. Indeed, transpiration's response to diversity was not influenced by species richness nor functional richness, suggesting that these factors are not key drivers of variability on a large scale. At the species level, wood density and tree type (gymnosperm vs. angiosperm) mediated the effect of diversity on transpiration: under drought conditions, species with low wood density transpired less in mixtures than in monocultures while species with high wood density transpired more in mixtures than in monocultures. For gymnosperms, diversity had a diminishing influence on transpiration, mainly under drought condition. Synthesis : We found that neither species nor functional diversity had a systematic influence on the effect of diversity on transpiration. Instead, only functional identity was found to exert a driving influence. Overall, much of the variability in transpiration's response to diversity remained unexplained. These results highlight the challenge of predicting the response of transpiration to species mixing, suggesting the need to proactively investigate mixtures through experimentation to anticipate the implications of specific species assemblages on water resource use.
树种多样性可以提高森林生产力和对极端气候的抵抗力,但也可以增加蒸腾速率,可能加剧干旱压力。文献中发现树木多样性对蒸腾的影响存在很大的可变性,我们进行了荟萃分析,以帮助更好地理解这种可变性的驱动因素。我们通过比较31项研究中混合地块和单一地块的树木蒸腾来计算效应值。我们计算了物种(单一栽培与混合栽培中给定物种的树木的比较)和群落(单一栽培与混合栽培中所有树木的蒸腾作用的比较)水平上的效应大小,并评估了物种丰富度、功能丰富度、水分限制(干旱或区域干旱)和功能同一性在物种水平上的影响。我们的荟萃分析显示,在物种或群落水平上,物种或功能多样性对蒸腾没有总体影响,而是强调了影响的幅度和方向的巨大变异性。事实上,蒸腾对多样性的响应不受物种丰富度和功能丰富度的影响,这表明这些因素不是大尺度变异性的关键驱动因素。在物种水平上,木材密度和树种类型(裸子植物与被子植物)介导了多样性对蒸腾的影响:在干旱条件下,木材密度低的树种混合蒸腾量低于单一栽培,而木材密度高的树种混合蒸腾量高于单一栽培。对裸子植物来说,多样性对蒸腾的影响逐渐减弱,尤其是在干旱条件下。综合:我们发现物种多样性和功能多样性都没有系统地影响多样性对蒸腾的影响。相反,只有功能认同被发现发挥驱动影响。总的来说,蒸腾作用对多样性反应的许多可变性仍未得到解释。这些结果突出了预测物种混合对蒸腾的响应的挑战,表明需要通过实验积极研究混合,以预测特定物种组合对水资源利用的影响。
{"title":"Are diverse forests thirstier? A meta‐analysis reveals no evidence for a consistent effect of species or functional diversity on tree transpiration","authors":"Tanvir Ahmed Shovon, Nia Perron, Damien Bonal, Christian Messier, Audrey Maheu","doi":"10.1111/1365-2745.70211","DOIUrl":"https://doi.org/10.1111/1365-2745.70211","url":null,"abstract":"<jats:list> <jats:list-item> Tree species diversity can enhance forest productivity and resistance to climate extremes but can also increase transpiration rates, potentially exacerbating drought stress. A large variability in the effect of tree diversity on transpiration is found in the literature, and we conducted a meta‐analysis to help better understand drivers of this variability. </jats:list-item> <jats:list-item> We computed effect sizes by comparing tree transpiration of mixed plots to monocultures from 31 studies. We calculated effect sizes at the species (comparison of trees of a given species in monoculture vs. mixed plots) and community (comparison of transpiration by all trees in monoculture vs. mixed plots) levels and assessed the influence of species richness, functional richness, water limitation (drought or regional aridity) and functional identity at the species level. </jats:list-item> <jats:list-item> Our meta‐analysis revealed no overall effect of species or functional diversity on transpiration at the species or community level, instead emphasizing the large variability in the magnitude and direction of effects. Indeed, transpiration's response to diversity was not influenced by species richness nor functional richness, suggesting that these factors are not key drivers of variability on a large scale. </jats:list-item> <jats:list-item> At the species level, wood density and tree type (gymnosperm vs. angiosperm) mediated the effect of diversity on transpiration: under drought conditions, species with low wood density transpired less in mixtures than in monocultures while species with high wood density transpired more in mixtures than in monocultures. For gymnosperms, diversity had a diminishing influence on transpiration, mainly under drought condition. </jats:list-item> <jats:list-item> <jats:italic>Synthesis</jats:italic> : We found that neither species nor functional diversity had a systematic influence on the effect of diversity on transpiration. Instead, only functional identity was found to exert a driving influence. Overall, much of the variability in transpiration's response to diversity remained unexplained. These results highlight the challenge of predicting the response of transpiration to species mixing, suggesting the need to proactively investigate mixtures through experimentation to anticipate the implications of specific species assemblages on water resource use. </jats:list-item> </jats:list>","PeriodicalId":191,"journal":{"name":"Journal of Ecology","volume":"30 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2025-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145651177","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The role of plant phenology in the response of plant productivity to decadal climate warming and cooling 植物物候在植物生产力对年代际气候变暖和变冷响应中的作用
IF 5.5 1区 环境科学与生态学 Q1 ECOLOGY Pub Date : 2025-12-02 DOI: 10.1111/1365-2745.70209
Yao Wei, Yuzhang Li, Mingli Ding, Kunhe Liu, Tianyuan Tan, Huiying Liu, Shiping Wang, Jin‐Sheng He, Xinquan Zhao, Alan E. Watson, Xin Jing, Zhenhua Zhang
Climate change is expected to intensify over the coming decades, potentially exerting substantial impacts on above‐ground net primary productivity (ANPP), a key indicator of ecosystem functioning and carbon sequestration. However, decadal cooling phases remain underexplored, and phenology is rarely integrated explicitly as a cascading mediator linking temperature to plant growth and ANPP. Consequently, the long‐term effects of climate change—particularly those associated with cooling phases—remain poorly understood. Based on a reciprocal transplant experiment initiated in 2007 in an alpine grassland, we measured ANPP, plant growth dynamics, flowering species composition, and phenological events. After 15 years, ANPP increased under warming but decreased under cooling. However, only the warming effect intensified over time, whereas the cooling effect showed no detectable temporal trend. Importantly, both warming and cooling effects on ANPP were integrated by early‐season phenology. Under warming conditions, earlier leaf‐out and accelerated growth rates corresponded with higher ANPP. However, leaf and flower phenology showed decoupled cascading effects on growth under cooling conditions: delayed leaf‐out inhibited plant growth, while delayed flowering partially mitigated this suppression. Synthesis . Therefore, extrapolations based solely on short‐term warming manipulations, neglecting both the differences in long‐term warming effects and the cooling phases with their distinct ecological mechanisms, will lead to inaccurate long‐term predictions. Our findings demonstrate that changes in plant phenological events mediate the impacts of decadal climate warming and cooling on ANPP in alpine grasslands, providing more comprehensive insights into how alpine ecosystem carbon cycling may respond to long‐term climate change.
气候变化预计将在未来几十年加剧,可能对地表净初级生产力(ANPP)产生重大影响,这是生态系统功能和碳封存的关键指标。然而,年代际冷却阶段仍未得到充分的研究,物候也很少被明确地整合为温度与植物生长和ANPP之间的级联介质。因此,人们对气候变化的长期影响,特别是与降温阶段相关的影响仍然知之甚少。基于2007年在高寒草地开展的反向移栽试验,我们测量了植物的ANPP、生长动态、开花物种组成和物候事件。15 a后,升温条件下ANPP增加,降温条件下ANPP减少。然而,随着时间的推移,只有变暖效应增强,而冷却效应没有明显的时间趋势。重要的是,增温和降温对ANPP的影响都是由早季物候综合起来的。在变暖条件下,较早的叶片脱落和加速的生长速率与较高的ANPP相对应。然而,在冷却条件下,叶和花的物候特征显示出对生长的解耦级联效应:叶片脱落延迟抑制植物生长,而开花延迟部分减轻了这种抑制。合成。因此,仅仅基于短期变暖操纵的外推,忽略了长期变暖效应和冷却阶段的差异及其独特的生态机制,将导致不准确的长期预测。我们的研究结果表明,植物物候事件的变化介导了年代际气候变暖和变冷对高寒草原ANPP的影响,为高寒草原生态系统碳循环如何响应长期气候变化提供了更全面的见解。
{"title":"The role of plant phenology in the response of plant productivity to decadal climate warming and cooling","authors":"Yao Wei, Yuzhang Li, Mingli Ding, Kunhe Liu, Tianyuan Tan, Huiying Liu, Shiping Wang, Jin‐Sheng He, Xinquan Zhao, Alan E. Watson, Xin Jing, Zhenhua Zhang","doi":"10.1111/1365-2745.70209","DOIUrl":"https://doi.org/10.1111/1365-2745.70209","url":null,"abstract":"<jats:list> <jats:list-item> Climate change is expected to intensify over the coming decades, potentially exerting substantial impacts on above‐ground net primary productivity (ANPP), a key indicator of ecosystem functioning and carbon sequestration. However, decadal cooling phases remain underexplored, and phenology is rarely integrated explicitly as a cascading mediator linking temperature to plant growth and ANPP. Consequently, the long‐term effects of climate change—particularly those associated with cooling phases—remain poorly understood. </jats:list-item> <jats:list-item> Based on a reciprocal transplant experiment initiated in 2007 in an alpine grassland, we measured ANPP, plant growth dynamics, flowering species composition, and phenological events. </jats:list-item> <jats:list-item> After 15 years, ANPP increased under warming but decreased under cooling. However, only the warming effect intensified over time, whereas the cooling effect showed no detectable temporal trend. Importantly, both warming and cooling effects on ANPP were integrated by early‐season phenology. Under warming conditions, earlier leaf‐out and accelerated growth rates corresponded with higher ANPP. However, leaf and flower phenology showed decoupled cascading effects on growth under cooling conditions: delayed leaf‐out inhibited plant growth, while delayed flowering partially mitigated this suppression. </jats:list-item> <jats:list-item> <jats:italic>Synthesis</jats:italic> . Therefore, extrapolations based solely on short‐term warming manipulations, neglecting both the differences in long‐term warming effects and the cooling phases with their distinct ecological mechanisms, will lead to inaccurate long‐term predictions. Our findings demonstrate that changes in plant phenological events mediate the impacts of decadal climate warming and cooling on ANPP in alpine grasslands, providing more comprehensive insights into how alpine ecosystem carbon cycling may respond to long‐term climate change. </jats:list-item> </jats:list>","PeriodicalId":191,"journal":{"name":"Journal of Ecology","volume":"72 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2025-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145651176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Beyond species richness: Grazing and fertilisation shape temperate grassland stability through distinct diversity effects 超越物种丰富度:放牧和施肥通过不同的多样性效应塑造温带草地的稳定性
IF 5.5 1区 环境科学与生态学 Q1 ECOLOGY Pub Date : 2025-12-01 DOI: 10.1111/1365-2745.70208
Baoshuang Hu, Winira Ilghar, Lina Mo, Chengliang Wang, Wanling Xu, Wei Sun
Alterations in land use, particularly grazing and fertilisation, pose significant threats to the stability of grassland ecosystems. While biodiversity is often associated with ecosystem stability, the precise processes through which various disturbances impact diversity's effects remain incompletely understood. This investigation delves into the individual and combined impacts of grazing and fertilisation on the temporal stability of community productivity within a temperate meadow steppe. Additionally, the study examines the relationships between these practices, species diversity and specific stabilising effects, including the dominance, asynchrony, averaging and interaction stability effects. Through 9 years of field experimentation, it was discovered that grazing decreased community stability by reducing above‐ground biomass, while fertilisation partially offset this destabilising effect. Notably, changes in land use predominantly affected stability via their influence on stabilising effects, regardless of species diversity itself. Specifically, stability modifications induced by grazing were primarily related to the dominance effect, whereas those resulting from fertilisation were associated with the asynchrony effect. Moreover, the averaging effect and interaction stability together played a crucial role in driving stability shifts within various land‐use change scenarios. Bayesian structural equation modelling revealed that these stabilising effects exerted a substantial and positive influence on temporal stability. Synthesis . Our findings emphasise that grazing and fertilisation differentially regulate grassland stability via dominance and asynchrony pathways, respectively. More broadly, our work reveals that land use fundamentally reshapes the architecture of stability, demonstrating that stability is not maintained through a universal mechanism but through context‐dependent pathways shaped by specific environmental pressures. This research enhances the mechanistic understanding of diversity–stability relationships and offers valuable insights for tailored grassland management strategies, such as the integration of moderate nitrogen supplementation with grazing practices to optimise the productivity–stability trade‐offs.
土地利用的改变,特别是放牧和施肥的改变,对草地生态系统的稳定构成重大威胁。虽然生物多样性经常与生态系统的稳定性联系在一起,但各种干扰对多样性影响的确切过程仍不完全清楚。本研究探讨了放牧和施肥对温带草甸草原群落生产力时间稳定性的单独和综合影响。此外,研究还探讨了这些做法、物种多样性和特定稳定效应之间的关系,包括优势效应、异步效应、平均效应和相互作用稳定效应。经过9年的田间试验,发现放牧通过减少地上生物量而降低群落稳定性,而施肥部分抵消了这种不稳定效应。值得注意的是,无论物种多样性本身如何,土地利用变化主要通过其对稳定效应的影响来影响稳定性。放牧引起的稳定性变化主要与显性效应有关,而施肥引起的稳定性变化主要与非同步效应有关。此外,平均效应和相互作用稳定性共同在驱动不同土地利用变化情景下的稳定性变化中发挥了至关重要的作用。贝叶斯结构方程模型表明,这些稳定效应对时间稳定性产生了实质性的积极影响。合成。我们的研究结果强调放牧和施肥分别通过显性途径和非同步途径对草地稳定性进行差异调节。更广泛地说,我们的研究表明,土地利用从根本上重塑了稳定性的架构,表明稳定性不是通过一个普遍的机制来维持的,而是通过特定环境压力形成的依赖于环境的途径来维持的。该研究增强了对多样性-稳定性关系的机制理解,并为定制化草原管理策略提供了有价值的见解,例如将适度补氮与放牧实践相结合,以优化生产力-稳定性权衡。
{"title":"Beyond species richness: Grazing and fertilisation shape temperate grassland stability through distinct diversity effects","authors":"Baoshuang Hu, Winira Ilghar, Lina Mo, Chengliang Wang, Wanling Xu, Wei Sun","doi":"10.1111/1365-2745.70208","DOIUrl":"https://doi.org/10.1111/1365-2745.70208","url":null,"abstract":"<jats:list> <jats:list-item> Alterations in land use, particularly grazing and fertilisation, pose significant threats to the stability of grassland ecosystems. While biodiversity is often associated with ecosystem stability, the precise processes through which various disturbances impact diversity's effects remain incompletely understood. </jats:list-item> <jats:list-item> This investigation delves into the individual and combined impacts of grazing and fertilisation on the temporal stability of community productivity within a temperate meadow steppe. Additionally, the study examines the relationships between these practices, species diversity and specific stabilising effects, including the dominance, asynchrony, averaging and interaction stability effects. </jats:list-item> <jats:list-item> Through 9 years of field experimentation, it was discovered that grazing decreased community stability by reducing above‐ground biomass, while fertilisation partially offset this destabilising effect. Notably, changes in land use predominantly affected stability via their influence on stabilising effects, regardless of species diversity itself. Specifically, stability modifications induced by grazing were primarily related to the dominance effect, whereas those resulting from fertilisation were associated with the asynchrony effect. Moreover, the averaging effect and interaction stability together played a crucial role in driving stability shifts within various land‐use change scenarios. Bayesian structural equation modelling revealed that these stabilising effects exerted a substantial and positive influence on temporal stability. </jats:list-item> <jats:list-item> <jats:italic>Synthesis</jats:italic> . Our findings emphasise that grazing and fertilisation differentially regulate grassland stability via dominance and asynchrony pathways, respectively. More broadly, our work reveals that land use fundamentally reshapes the architecture of stability, demonstrating that stability is not maintained through a universal mechanism but through context‐dependent pathways shaped by specific environmental pressures. This research enhances the mechanistic understanding of diversity–stability relationships and offers valuable insights for tailored grassland management strategies, such as the integration of moderate nitrogen supplementation with grazing practices to optimise the productivity–stability trade‐offs. </jats:list-item> </jats:list>","PeriodicalId":191,"journal":{"name":"Journal of Ecology","volume":"16 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145645276","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stronger fertile island patterns enhance plant facilitation in drylands, regardless of overall ecosystem fertility 无论整体生态系统的肥力如何,更肥沃的岛屿格局都能促进旱地植物的生长
IF 5.5 1区 环境科学与生态学 Q1 ECOLOGY Pub Date : 2025-11-27 DOI: 10.1111/1365-2745.70206
Victoria Inés Giachetti, Facundo Alcides Decunta, Magdalena Druille, Martín Roberto Aguiar
Plant facilitation is a central process structuring arid ecosystems, where soil nutrients play a key role. However, it remains unclear whether the heterogeneity and availability of soil nutrients are linked to facilitation intensity at a global scale. Here, we tested two hypotheses: (i) that facilitation intensity increases with stronger fertile island patterns (higher nutrient heterogeneity at the microsite level) and (ii) that it decreases with increasing overall ecosystem soil fertility (higher nutrient availability at the ecosystem level) across drylands. To test these hypotheses, we conducted a meta‐analysis based on 94 observations from 27 studies that jointly measured plant facilitation and the fertile island effect for nitrogen and/or phosphorus in drylands. According to our first hypothesis, we found that facilitation intensity increased with stronger fertile island patterns of nitrogen and phosphorus. However, contrary to our second hypothesis, facilitation intensity did not respond to ecosystem fertility. This indicates that facilitation intensity increases as the difference in soil nutrient concentration between nurse and open microsites becomes larger, independently of overall ecosystem fertility. Synthesis . Our study provides novel insights into the role of soil nutrients in plant facilitation in dryland ecosystems. Our findings highlight that the strength of the fertile island effect is a key ecosystem feature mediating facilitation intensity, regardless of overall ecosystem fertility. These findings emphasize the need to investigate how soil degradation processes could alter fertile island patterns and facilitation processes in drylands.
植物促进是构建干旱生态系统的核心过程,其中土壤养分起着关键作用。然而,目前尚不清楚土壤养分的异质性和可用性是否与全球范围内的促进强度有关。在这里,我们测试了两个假设:(i)促进强度随着肥沃岛屿模式的增强而增加(微站点水平上更高的养分异质性);(ii)随着旱地整体生态系统土壤肥力的增加而降低(生态系统水平上更高的养分有效性)。为了验证这些假设,我们对来自27项研究的94项观察结果进行了荟萃分析,这些研究共同测量了旱地植物对氮和/或磷的促进作用和肥沃岛效应。根据我们的第一个假设,我们发现促进强度随着氮和磷的肥沃岛模式的增强而增加。然而,与我们的第二个假设相反,促进强度对生态系统肥力没有响应。这表明,促进强度随土壤养分浓度差异的增大而增加,而与生态系统总体肥力无关。合成。我们的研究为土壤养分在旱地生态系统中促进植物生长的作用提供了新的见解。我们的研究结果强调,无论整体生态系统的肥力如何,肥沃岛效应的强度是调节促进强度的关键生态系统特征。这些发现强调需要调查土壤退化过程如何改变旱地肥沃岛屿的格局和促进过程。
{"title":"Stronger fertile island patterns enhance plant facilitation in drylands, regardless of overall ecosystem fertility","authors":"Victoria Inés Giachetti, Facundo Alcides Decunta, Magdalena Druille, Martín Roberto Aguiar","doi":"10.1111/1365-2745.70206","DOIUrl":"https://doi.org/10.1111/1365-2745.70206","url":null,"abstract":"<jats:list> <jats:list-item> Plant facilitation is a central process structuring arid ecosystems, where soil nutrients play a key role. However, it remains unclear whether the heterogeneity and availability of soil nutrients are linked to facilitation intensity at a global scale. </jats:list-item> <jats:list-item> Here, we tested two hypotheses: (i) that facilitation intensity increases with stronger fertile island patterns (higher nutrient heterogeneity at the microsite level) and (ii) that it decreases with increasing overall ecosystem soil fertility (higher nutrient availability at the ecosystem level) across drylands. </jats:list-item> <jats:list-item> To test these hypotheses, we conducted a meta‐analysis based on 94 observations from 27 studies that jointly measured plant facilitation and the fertile island effect for nitrogen and/or phosphorus in drylands. </jats:list-item> <jats:list-item> According to our first hypothesis, we found that facilitation intensity increased with stronger fertile island patterns of nitrogen and phosphorus. However, contrary to our second hypothesis, facilitation intensity did not respond to ecosystem fertility. This indicates that facilitation intensity increases as the difference in soil nutrient concentration between nurse and open microsites becomes larger, independently of overall ecosystem fertility. </jats:list-item> <jats:list-item> <jats:italic>Synthesis</jats:italic> . Our study provides novel insights into the role of soil nutrients in plant facilitation in dryland ecosystems. Our findings highlight that the strength of the fertile island effect is a key ecosystem feature mediating facilitation intensity, regardless of overall ecosystem fertility. These findings emphasize the need to investigate how soil degradation processes could alter fertile island patterns and facilitation processes in drylands. </jats:list-item> </jats:list>","PeriodicalId":191,"journal":{"name":"Journal of Ecology","volume":"34 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2025-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145609025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Ecology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1