Exploiting Ground Depth Estimation for Mobile Monocular 3D Object Detection

Yunsong Zhou;Quan Liu;Hongzi Zhu;Yunzhe Li;Shan Chang;Minyi Guo
{"title":"Exploiting Ground Depth Estimation for Mobile Monocular 3D Object Detection","authors":"Yunsong Zhou;Quan Liu;Hongzi Zhu;Yunzhe Li;Shan Chang;Minyi Guo","doi":"10.1109/TPAMI.2025.3529084","DOIUrl":null,"url":null,"abstract":"Detecting 3D objects from a monocular camera in mobile applications, such as on a vehicle, drone, or robot, is a crucial but challenging task. The monocular vision’s <italic>near-far disparity</i> and the camera’s constantly changing position make it difficult to achieve high accuracy, especially for distant objects. In this paper, we propose a new Mono3D framework named <italic>MoGDE</i>, which takes inspiration from the observation that an object’s depth can be inferred from the ground’s depth underneath it. MoGDE estimates the corresponding ground depth of an image and utilizes this information to guide Mono3D. We use a pose detection network to estimate the camera’s orientation and construct a feature map that represents pixel-level ground depth based on the 3D-to-2D perspective geometry. To further improve Mono3D with the estimated ground depth, we design an RGB-D feature fusion network based on transformer architecture. The long-range self-attention mechanism is utilized to identify ground-contacting points and pin the corresponding ground depth to the image feature map. We evaluate MoGDE on the KITTI dataset, and the results show that it significantly improves the accuracy and robustness of Mono3D for both near and far objects. MoGDE outperforms state-of-the-art methods and ranks first among the pure image-based methods on the KITTI 3D benchmark.","PeriodicalId":94034,"journal":{"name":"IEEE transactions on pattern analysis and machine intelligence","volume":"47 4","pages":"3079-3093"},"PeriodicalIF":18.6000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on pattern analysis and machine intelligence","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10842472/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Detecting 3D objects from a monocular camera in mobile applications, such as on a vehicle, drone, or robot, is a crucial but challenging task. The monocular vision’s near-far disparity and the camera’s constantly changing position make it difficult to achieve high accuracy, especially for distant objects. In this paper, we propose a new Mono3D framework named MoGDE, which takes inspiration from the observation that an object’s depth can be inferred from the ground’s depth underneath it. MoGDE estimates the corresponding ground depth of an image and utilizes this information to guide Mono3D. We use a pose detection network to estimate the camera’s orientation and construct a feature map that represents pixel-level ground depth based on the 3D-to-2D perspective geometry. To further improve Mono3D with the estimated ground depth, we design an RGB-D feature fusion network based on transformer architecture. The long-range self-attention mechanism is utilized to identify ground-contacting points and pin the corresponding ground depth to the image feature map. We evaluate MoGDE on the KITTI dataset, and the results show that it significantly improves the accuracy and robustness of Mono3D for both near and far objects. MoGDE outperforms state-of-the-art methods and ranks first among the pure image-based methods on the KITTI 3D benchmark.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于地面深度估计的移动单目三维目标检测
从移动应用程序(如车辆、无人机或机器人)的单目摄像头检测3D物体是一项至关重要但具有挑战性的任务。单目视觉的近远视差和相机位置的不断变化使其难以达到高精度,特别是对于远处的物体。在本文中,我们提出了一个名为MoGDE的新的Mono3D框架,该框架的灵感来自于观察到物体的深度可以从其下方的地面深度推断出来。MoGDE估计图像的相应地面深度,并利用这些信息来指导Mono3D。我们使用姿态检测网络来估计相机的方向,并基于3d到2d的透视几何构造一个表示像素级地面深度的特征图。为了进一步提高Mono3D的估计地面深度,我们设计了一个基于变压器架构的RGB-D特征融合网络。利用远程自关注机制识别地面接触点,并将相应的地面深度钉入图像特征图。我们在KITTI数据集上对MoGDE进行了评估,结果表明它显著提高了Mono3D对近距离和远距离目标的精度和鲁棒性。MoGDE优于最先进的方法,在KITTI 3D基准的纯基于图像的方法中排名第一。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Unsupervised Gaze Representation Learning by Switching Features. H2OT: Hierarchical Hourglass Tokenizer for Efficient Video Pose Transformers. MV2DFusion: Leveraging Modality-Specific Object Semantics for Multi-Modal 3D Detection. Parse Trees Guided LLM Prompt Compression. Fast Multi-View Discrete Clustering Via Spectral Embedding Fusion.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1