Ordered Interfacial Water Generated at Poly(ionic liquid) Membrane Surface Imparts Ultrafast Water Transport and Superoleophobicity

IF 14.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Journal of the American Chemical Society Pub Date : 2025-01-16 DOI:10.1021/jacs.4c14897
Luqi Xiao, Xiaoxuan Zheng, Ju Bai, Junjun Tan, Dujuan Meng, Zhen Zhang, Hongyan Liu, Lili Gong, Shuangjiang Luo, Shuji Ye, Zhongyi Jiang, Linglong Shan, Suojiang Zhang
{"title":"Ordered Interfacial Water Generated at Poly(ionic liquid) Membrane Surface Imparts Ultrafast Water Transport and Superoleophobicity","authors":"Luqi Xiao, Xiaoxuan Zheng, Ju Bai, Junjun Tan, Dujuan Meng, Zhen Zhang, Hongyan Liu, Lili Gong, Shuangjiang Luo, Shuji Ye, Zhongyi Jiang, Linglong Shan, Suojiang Zhang","doi":"10.1021/jacs.4c14897","DOIUrl":null,"url":null,"abstract":"Achieving ultrahigh permeance and superoleophobicity is crucial for membrane application. Here, we demonstrated that a poly(ionic liquid)/PES hydrogel membrane can achieve dual goals. The high polarity of the ionic liquids induces the water molecules on the membrane surface to be arranged more ordered, as verified by molecular dynamics (MD) simulation and advanced femtosecond sum frequency generation (SFG) vibrational spectroscopy. Meanwhile, a large amount of water exists in membrane pores, demonstrated by water absorption, low-field nuclear magnetic resonance, and SFG spectroscopy. The interfacial water layer endows the membrane with superior anti-oil-fouling properties, and the large amount of water in membrane pores imparts membrane with ultrahigh permeability. The positive charge on the channel surface and moderate channel size confer a high rejection of metal ions. The optimal membrane exhibited a permeance of 35.1 L m<sup>–2</sup> h<sup>–1</sup> bar<sup>–1</sup>, 5–10 times that of conventional hydrogel membranes with similar rejection. Moreover, the membrane exhibited excellent antibacterial properties. It can be expected that highly polar poly(ionic liquid) membranes will find promising applications in the water treatment field.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"49 1","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c14897","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Achieving ultrahigh permeance and superoleophobicity is crucial for membrane application. Here, we demonstrated that a poly(ionic liquid)/PES hydrogel membrane can achieve dual goals. The high polarity of the ionic liquids induces the water molecules on the membrane surface to be arranged more ordered, as verified by molecular dynamics (MD) simulation and advanced femtosecond sum frequency generation (SFG) vibrational spectroscopy. Meanwhile, a large amount of water exists in membrane pores, demonstrated by water absorption, low-field nuclear magnetic resonance, and SFG spectroscopy. The interfacial water layer endows the membrane with superior anti-oil-fouling properties, and the large amount of water in membrane pores imparts membrane with ultrahigh permeability. The positive charge on the channel surface and moderate channel size confer a high rejection of metal ions. The optimal membrane exhibited a permeance of 35.1 L m–2 h–1 bar–1, 5–10 times that of conventional hydrogel membranes with similar rejection. Moreover, the membrane exhibited excellent antibacterial properties. It can be expected that highly polar poly(ionic liquid) membranes will find promising applications in the water treatment field.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
期刊最新文献
Crafting Hollow Spheres via Bulk Ice Melting with ppb-Level Gas Sensing Performance Ordered Interfacial Water Generated at Poly(ionic liquid) Membrane Surface Imparts Ultrafast Water Transport and Superoleophobicity Oxygen-Driven Atom Transfer Radical Polymerization Readily Accessible, Versatile, and Adaptive Biaxially Chiral Chromophores Supramolecularly Built Local Electric Field Microenvironment around Cobalt Phthalocyanine in Covalent Organic Frameworks for Enhanced Photocatalysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1