Readily Accessible, Versatile, and Adaptive Biaxially Chiral Chromophores

IF 14.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Journal of the American Chemical Society Pub Date : 2025-01-16 DOI:10.1021/jacs.4c16566
Summer J. Brown, Jiaoyan Zhao, Ellen Forehand, Lukasz Dobrzycki, Rupam Roy, A M Mahmudul Hasan, Wendu Ding, Cedric Schaack, Austin M. Evans
{"title":"Readily Accessible, Versatile, and Adaptive Biaxially Chiral Chromophores","authors":"Summer J. Brown, Jiaoyan Zhao, Ellen Forehand, Lukasz Dobrzycki, Rupam Roy, A M Mahmudul Hasan, Wendu Ding, Cedric Schaack, Austin M. Evans","doi":"10.1021/jacs.4c16566","DOIUrl":null,"url":null,"abstract":"Precisely controlling quantum states is relevant in next-generation quantum computing, encryption, and sensing. Chiral organic chromophores host unique light–matter interactions, which allow them to manipulate the quantized circular polarization of photons. Axially chiral organic scaffolds, such as helicenes or twisted acenes, are powerful motifs in chiral light manipulation. However, these systems usually require complex syntheses and small-scale (10 mg) enantiomer separations, typically complicating systematic investigations of their structure–property relationships. We report here the straightforward synthesis of both enantiomers (<i>R</i>/<i>S</i>) of 10 different axially chiral chromophores. This protocol relies on a readily accessible, enantiomerically pure, and axially chiral contorting element, benzodinaptho[1,4]dioxicine-2,3-diamine (DODA), that we synthesize in two steps with high purity and good yield at gram scale. Subsequent derivation of DODA transfers the chirality from one axis to twist the dominant chromophore around a second, orthogonal axis. Using this biaxial contortion design element, we produce 10 enantiopure biaxial chromophores, without the need for chromatographic separations, and no observable compromise to chiroptical integrity. These chromophores exhibit broadband single-handed absorption without Cotton effects from 265 to 485 nm, indicating chiral excitonic character that forms between the DODA and twisted core chromophore. This platform is responsive to solvent polarity in the excited state, displaying &gt;50 nm bathochromic shifts in the photoluminescence spectra. In addition, this scaffold intensely interacts with changes in pH, which allows us to ultimately access monosignate circular dichroism absorption over a 300 nm range.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"9 1","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c16566","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Precisely controlling quantum states is relevant in next-generation quantum computing, encryption, and sensing. Chiral organic chromophores host unique light–matter interactions, which allow them to manipulate the quantized circular polarization of photons. Axially chiral organic scaffolds, such as helicenes or twisted acenes, are powerful motifs in chiral light manipulation. However, these systems usually require complex syntheses and small-scale (10 mg) enantiomer separations, typically complicating systematic investigations of their structure–property relationships. We report here the straightforward synthesis of both enantiomers (R/S) of 10 different axially chiral chromophores. This protocol relies on a readily accessible, enantiomerically pure, and axially chiral contorting element, benzodinaptho[1,4]dioxicine-2,3-diamine (DODA), that we synthesize in two steps with high purity and good yield at gram scale. Subsequent derivation of DODA transfers the chirality from one axis to twist the dominant chromophore around a second, orthogonal axis. Using this biaxial contortion design element, we produce 10 enantiopure biaxial chromophores, without the need for chromatographic separations, and no observable compromise to chiroptical integrity. These chromophores exhibit broadband single-handed absorption without Cotton effects from 265 to 485 nm, indicating chiral excitonic character that forms between the DODA and twisted core chromophore. This platform is responsive to solvent polarity in the excited state, displaying >50 nm bathochromic shifts in the photoluminescence spectra. In addition, this scaffold intensely interacts with changes in pH, which allows us to ultimately access monosignate circular dichroism absorption over a 300 nm range.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
期刊最新文献
Crafting Hollow Spheres via Bulk Ice Melting with ppb-Level Gas Sensing Performance Ordered Interfacial Water Generated at Poly(ionic liquid) Membrane Surface Imparts Ultrafast Water Transport and Superoleophobicity Oxygen-Driven Atom Transfer Radical Polymerization Readily Accessible, Versatile, and Adaptive Biaxially Chiral Chromophores Supramolecularly Built Local Electric Field Microenvironment around Cobalt Phthalocyanine in Covalent Organic Frameworks for Enhanced Photocatalysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1