Patrick Dörflinger, Philipp Rieder, Vladimir Dyakonov
{"title":"Temperature-Dependent Charge-Carrier Dynamics in Lead-Halide Perovskites: Indications for Dynamic Disorder Dominated Scattering Mechanism","authors":"Patrick Dörflinger, Philipp Rieder, Vladimir Dyakonov","doi":"10.1002/aenm.202403332","DOIUrl":null,"url":null,"abstract":"Lead-halide perovskites have emerged as a promising material class in light-harvesting and light-emitting applications due to their exceptional semiconductor properties. Nonetheless, crucial semiconducting properties such as the charge carrier scattering mechanism and its impact on recombination dynamics are not well studied. Here, five different lead-halide perovskite compositions are systematically examined to determine their temperature-dependent mobility, and the prevalent scattering mechanisms involved are identified. Dynamic disorder is proposed to be the predominant scattering mechanism at room temperature and above, as evidenced by a change in the power-law <i>T<sup>m</sup></i>. Notably, the onset temperature for this behavior varies with the perovskite composition. Additionally, it is found that this scattering process coincides with changes in fast-trapping behavior in MAPbI<sub>3</sub> perovskite, which in turn alters recombination dynamics such as carrier lifetime and diffusion length. These results suggest that this scattering mechanism contributes to the defect tolerance of perovskites, providing valuable insights for further investigations.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"28 1","pages":""},"PeriodicalIF":24.4000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202403332","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Lead-halide perovskites have emerged as a promising material class in light-harvesting and light-emitting applications due to their exceptional semiconductor properties. Nonetheless, crucial semiconducting properties such as the charge carrier scattering mechanism and its impact on recombination dynamics are not well studied. Here, five different lead-halide perovskite compositions are systematically examined to determine their temperature-dependent mobility, and the prevalent scattering mechanisms involved are identified. Dynamic disorder is proposed to be the predominant scattering mechanism at room temperature and above, as evidenced by a change in the power-law Tm. Notably, the onset temperature for this behavior varies with the perovskite composition. Additionally, it is found that this scattering process coincides with changes in fast-trapping behavior in MAPbI3 perovskite, which in turn alters recombination dynamics such as carrier lifetime and diffusion length. These results suggest that this scattering mechanism contributes to the defect tolerance of perovskites, providing valuable insights for further investigations.
期刊介绍:
Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small.
With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics.
The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.