Enhanced synaptic properties in HfO2-based trilayer memristor by using ZrO2-x oxygen vacancy reservoir layer for neuromorphic computing

IF 11.2 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Materials Science & Technology Pub Date : 2025-01-16 DOI:10.1016/j.jmst.2024.12.020
Turgun Boynazarov, Joonbong Lee, Hojin Lee, Sangwoo Lee, Hyunbin Chung, Dae Haa Ryu, Haider Abbas, Taekjib Choi
{"title":"Enhanced synaptic properties in HfO2-based trilayer memristor by using ZrO2-x oxygen vacancy reservoir layer for neuromorphic computing","authors":"Turgun Boynazarov, Joonbong Lee, Hojin Lee, Sangwoo Lee, Hyunbin Chung, Dae Haa Ryu, Haider Abbas, Taekjib Choi","doi":"10.1016/j.jmst.2024.12.020","DOIUrl":null,"url":null,"abstract":"Neuromorphic computing devices leveraging HfO<sub>2</sub> and ZrO<sub>2</sub> materials have recently garnered significant attention due to their potential for brain-inspired computing systems. In this study, we present a novel trilayer Pt/HfO<sub>2</sub>/ZrO<sub>2-</sub><em><sub>x</sub></em>/HfO<sub>2</sub>/TiN memristor, engineered with a ZrO<sub>2-</sub><em><sub>x</sub></em> oxygen vacancy reservoir (OVR) layer fabricated via radio frequency (RF) sputtering under controlled oxygen ambient. The incorporation of the ZrO<sub>2-</sub><em><sub>x</sub></em> OVR layer enables enhanced resistive switching characteristics, including a high ON/OFF ratio (∼8000), excellent uniformity, robust data retention (&gt;10⁵ s), and multilevel storage capabilities. Furthermore, the memristor demonstrates superior synaptic plasticity with linear long-term potentiation (LTP) and depression (LTD), achieving low non-linearity values of 1.36 (LTP) and 0.66 (LTD), and a recognition accuracy of 95.3% in an MNIST dataset simulation. The unique properties of the ZrO<sub>2-</sub><em><sub>x</sub></em> layer, particularly its ability to act as a dynamic oxygen vacancy reservoir, significantly enhance synaptic performance by stabilizing oxygen vacancy migration. These findings establish the OVR-trilayer memristor as a promising candidate for future neuromorphic computing and high-performance memory applications.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"7 1","pages":""},"PeriodicalIF":11.2000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jmst.2024.12.020","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Neuromorphic computing devices leveraging HfO2 and ZrO2 materials have recently garnered significant attention due to their potential for brain-inspired computing systems. In this study, we present a novel trilayer Pt/HfO2/ZrO2-x/HfO2/TiN memristor, engineered with a ZrO2-x oxygen vacancy reservoir (OVR) layer fabricated via radio frequency (RF) sputtering under controlled oxygen ambient. The incorporation of the ZrO2-x OVR layer enables enhanced resistive switching characteristics, including a high ON/OFF ratio (∼8000), excellent uniformity, robust data retention (>10⁵ s), and multilevel storage capabilities. Furthermore, the memristor demonstrates superior synaptic plasticity with linear long-term potentiation (LTP) and depression (LTD), achieving low non-linearity values of 1.36 (LTP) and 0.66 (LTD), and a recognition accuracy of 95.3% in an MNIST dataset simulation. The unique properties of the ZrO2-x layer, particularly its ability to act as a dynamic oxygen vacancy reservoir, significantly enhance synaptic performance by stabilizing oxygen vacancy migration. These findings establish the OVR-trilayer memristor as a promising candidate for future neuromorphic computing and high-performance memory applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用ZrO2-x氧空位储层增强hfo2基三层记忆电阻器的突触特性
最近,利用 HfO2 和 ZrO2 材料的神经形态计算设备因其在大脑启发计算系统中的潜力而备受关注。在本研究中,我们展示了一种新型三层铂/氧化铪/氧化锆/氧化氢/钛镍忆阻器,该忆阻器在可控的氧气环境下通过射频溅射制造出氧化锆氧空位储层(OVR)。ZrO2-x OVR 层的加入增强了电阻开关特性,包括高导通/关断比(∼8000)、出色的均匀性、强大的数据保持能力(10⁵秒)和多级存储能力。此外,这种忆阻器还表现出卓越的突触可塑性,具有线性长期电位(LTP)和抑制(LTD),非线性值低至 1.36(LTP)和 0.66(LTD),在 MNIST 数据集模拟中的识别准确率高达 95.3%。ZrO2-x 层的独特性质,尤其是其作为动态氧空位库的能力,通过稳定氧空位迁移显著提高了突触性能。这些发现使 OVR 层忆阻器成为未来神经形态计算和高性能存储器应用的理想候选器件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Materials Science & Technology
Journal of Materials Science & Technology 工程技术-材料科学:综合
CiteScore
20.00
自引率
11.00%
发文量
995
审稿时长
13 days
期刊介绍: Journal of Materials Science & Technology strives to promote global collaboration in the field of materials science and technology. It primarily publishes original research papers, invited review articles, letters, research notes, and summaries of scientific achievements. The journal covers a wide range of materials science and technology topics, including metallic materials, inorganic nonmetallic materials, and composite materials.
期刊最新文献
New insights into the creep degradation mechanisms in thermal barrier coating/single-crystal superalloy system with temperature and stress dependency Grain refinement and its effect of polycrystalline metals during high strain rate deformation: Crystal plasticity modeling A Novel NIR-responsive coating for magnesium implants: controllable degradation enhanced by air bomb Multi-objective optimization of laser powder bed fused titanium considering strength and ductility: A new framework based on explainable stacking ensemble learning and NSGA-II Achieving ballistic impact resistance in a lightweight Mg-Gd-Y-Zn alloy against a 7.62 mm steel core projectile for anti-armor applications; a microstructural approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1