Integration of hydrophobic gas diffusion layers for zero-gap electrolyzers to enable highly energy-efficient CO2 electrolysis to C2 products

IF 11.5 Q1 CHEMISTRY, PHYSICAL Chem Catalysis Pub Date : 2025-01-17 DOI:10.1016/j.checat.2024.101235
Maxwell Goldman, Eric Krall, Michell Marufu, Melinda L. Jue, Santiago Tzintzun, Jonathan Kai Wagner, Shaffiq Jaffer, Amitava Sarkar, Maximilian Fleischer, Elfriede Simon, Andrew A. Wong, Sarah E. Baker
{"title":"Integration of hydrophobic gas diffusion layers for zero-gap electrolyzers to enable highly energy-efficient CO2 electrolysis to C2 products","authors":"Maxwell Goldman, Eric Krall, Michell Marufu, Melinda L. Jue, Santiago Tzintzun, Jonathan Kai Wagner, Shaffiq Jaffer, Amitava Sarkar, Maximilian Fleischer, Elfriede Simon, Andrew A. Wong, Sarah E. Baker","doi":"10.1016/j.checat.2024.101235","DOIUrl":null,"url":null,"abstract":"Electrochemical CO<sub>2</sub> reduction (eCO2R) is an attractive route for mitigating global CO<sub>2</sub> emissions while producing value-added chemicals. Ethylene is one product of eCO2R and is an essential industrial precursor with a global market of $230 billion. The large-scale implementation of C<sub>2</sub>H<sub>4</sub>-selective CO<sub>2</sub> electrolyzers remains challenging because of low energy efficiencies. In this work, we develop the design principles necessary for incorporating an expanded polytetrafluoroethylene (ePTFE) electrode into a zero-gap electrolyzer while simultaneously developing an integrated electrical front contact that reduces the ohmic resistances inherent to electrically insulating gas diffusion layers. By co-designing the catalyst layer, gas diffusion medium, and operating conditions for a zero-gap ePTFE gas diffusion electrode (GDE), we achieved a full-cell voltage of 2.5 V at 200 mA cm<sup>−2</sup> at 25 cm<sup>2</sup> geometric area cell with Faradaic efficiencies of 48% for ethylene and 40% for ethanol. This work highlights strategies for developing a scalable, stable, and highly energy-efficient eCO2R for C<sub>2</sub> products.","PeriodicalId":53121,"journal":{"name":"Chem Catalysis","volume":"50 1","pages":""},"PeriodicalIF":11.5000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem Catalysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.checat.2024.101235","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Electrochemical CO2 reduction (eCO2R) is an attractive route for mitigating global CO2 emissions while producing value-added chemicals. Ethylene is one product of eCO2R and is an essential industrial precursor with a global market of $230 billion. The large-scale implementation of C2H4-selective CO2 electrolyzers remains challenging because of low energy efficiencies. In this work, we develop the design principles necessary for incorporating an expanded polytetrafluoroethylene (ePTFE) electrode into a zero-gap electrolyzer while simultaneously developing an integrated electrical front contact that reduces the ohmic resistances inherent to electrically insulating gas diffusion layers. By co-designing the catalyst layer, gas diffusion medium, and operating conditions for a zero-gap ePTFE gas diffusion electrode (GDE), we achieved a full-cell voltage of 2.5 V at 200 mA cm−2 at 25 cm2 geometric area cell with Faradaic efficiencies of 48% for ethylene and 40% for ethanol. This work highlights strategies for developing a scalable, stable, and highly energy-efficient eCO2R for C2 products.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
为零间隙电解槽集成疏水气体扩散层,实现C2产品的高能效CO2电解
电化学二氧化碳还原(eCO2R)是一种有吸引力的途径,可以在生产增值化学品的同时减少全球二氧化碳排放。乙烯是eCO2R的一种产品,是一种重要的工业前体,全球市场规模为2300亿美元。由于能源效率低,c2h4选择性CO2电解槽的大规模实施仍然具有挑战性。在这项工作中,我们开发了将膨胀聚四氟乙烯(ePTFE)电极整合到零间隙电解槽中所需的设计原则,同时开发了集成电前接触,以降低电绝缘气体扩散层固有的欧姆电阻。通过共同设计催化剂层、气体扩散介质和零间隙ePTFE气体扩散电极(GDE)的操作条件,我们实现了在200 mA cm - 2、25 cm2几何面积下2.5 V的全电池电压,乙烯的法拉第效率为48%,乙醇的法拉第效率为40%。这项工作强调了为C2产品开发可扩展、稳定和高能效的eCO2R的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.50
自引率
6.40%
发文量
0
期刊介绍: Chem Catalysis is a monthly journal that publishes innovative research on fundamental and applied catalysis, providing a platform for researchers across chemistry, chemical engineering, and related fields. It serves as a premier resource for scientists and engineers in academia and industry, covering heterogeneous, homogeneous, and biocatalysis. Emphasizing transformative methods and technologies, the journal aims to advance understanding, introduce novel catalysts, and connect fundamental insights to real-world applications for societal benefit.
期刊最新文献
Modeling electrochemical nitrogen reduction Synergistic integration of atomic-scale Ni-N sites and Ni nanoparticles for enhanced protonation in pH-universal electrochemical CO2 reduction Hydrogen peroxide photosynthesis from water and air using a scaled-up 1-m2 flow reactor Integration of hydrophobic gas diffusion layers for zero-gap electrolyzers to enable highly energy-efficient CO2 electrolysis to C2 products Beyond thermocatalysis for the production of ultrahigh-purity CO from HCOOH decomposition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1