Size-dependent ecotoxicological impacts of tire wear particles on zebrafish physiology and gut microbiota: implications for aquatic ecosystem health

IF 12.2 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL Journal of Hazardous Materials Pub Date : 2025-01-15 DOI:10.1016/j.jhazmat.2025.137215
Yun Zhang, Qianqian Song, Qingxuan Meng, Tianyu Zhao, Xiaolong Wang, Xinrui Meng, Jing Cong
{"title":"Size-dependent ecotoxicological impacts of tire wear particles on zebrafish physiology and gut microbiota: implications for aquatic ecosystem health","authors":"Yun Zhang, Qianqian Song, Qingxuan Meng, Tianyu Zhao, Xiaolong Wang, Xinrui Meng, Jing Cong","doi":"10.1016/j.jhazmat.2025.137215","DOIUrl":null,"url":null,"abstract":"The ecological impact of tire wear particles (TWP), a significant source of microplastics pollution, is increasingly concerning, especially given their potential effects on the health of aquatic ecosystems. This study investigates the size-dependent ecotoxicological responses of zebrafish (<em>Danio rerio</em>) to TWP exposure, focusing on physiological, metabolic, and microbial community impacts over a 15-day exposure period followed by a 15-day excretion period. Through integrated analysis of gut microbiome composition, liver transcriptomics, and host physiological markers, we found that smaller TWP particles (&lt; 120 μm) induced oxidative stress, evidenced by increased SOD and MDA levels, and inhibited growth by reducing body mass and gut length. In contrast, larger TWP particles (250 - 380 μm) caused more substantial disruptions in lipid and xenobiotic metabolic pathways, as shown by significant downregulation of key metabolic genes (<em>acads</em>, <em>cpt2_1</em>, <em>hadhaa</em>), and alterations in the gut microbiome, including the enrichment of pathogenic genera, such as <em>Enterococcus</em> and <em>Fusobacterium</em>, while depleting beneficial microbes like <em>Acinetobacter</em> and <em>Methyloversatilis</em>. These microbiome shifts led to a more complex and potentially pathogenic gut microbiome. Notably, zebrafish displayed adaptive resilience during the excretion period, with significant recovery in body mass and microbial composition, emphasizing the adaptive capacity of aquatic organisms to pollutants. Our findings underscore the broader ecological risks posed by TWP, the pivotal role of gut microbiota in host resilience to pollutants, and the need for comprehensive management strategies addressing emerging contaminants in aquatic ecosystems.","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"118 1","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2025.137215","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

The ecological impact of tire wear particles (TWP), a significant source of microplastics pollution, is increasingly concerning, especially given their potential effects on the health of aquatic ecosystems. This study investigates the size-dependent ecotoxicological responses of zebrafish (Danio rerio) to TWP exposure, focusing on physiological, metabolic, and microbial community impacts over a 15-day exposure period followed by a 15-day excretion period. Through integrated analysis of gut microbiome composition, liver transcriptomics, and host physiological markers, we found that smaller TWP particles (< 120 μm) induced oxidative stress, evidenced by increased SOD and MDA levels, and inhibited growth by reducing body mass and gut length. In contrast, larger TWP particles (250 - 380 μm) caused more substantial disruptions in lipid and xenobiotic metabolic pathways, as shown by significant downregulation of key metabolic genes (acads, cpt2_1, hadhaa), and alterations in the gut microbiome, including the enrichment of pathogenic genera, such as Enterococcus and Fusobacterium, while depleting beneficial microbes like Acinetobacter and Methyloversatilis. These microbiome shifts led to a more complex and potentially pathogenic gut microbiome. Notably, zebrafish displayed adaptive resilience during the excretion period, with significant recovery in body mass and microbial composition, emphasizing the adaptive capacity of aquatic organisms to pollutants. Our findings underscore the broader ecological risks posed by TWP, the pivotal role of gut microbiota in host resilience to pollutants, and the need for comprehensive management strategies addressing emerging contaminants in aquatic ecosystems.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Hazardous Materials
Journal of Hazardous Materials 工程技术-工程:环境
CiteScore
25.40
自引率
5.90%
发文量
3059
审稿时长
58 days
期刊介绍: The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.
期刊最新文献
Active surface area determines the activity of biochar in Fenton-like oxidation processes Effect and mechanism of the moisture content on the kinetic retardation of LNAPL pollutant migration by the capillary zone Interfacial hydrophilicity induced CoAl-LDH/Ti3C2Tx@PVDF Fenton-like catalytic filtration membrane for efficient anti-fouling and water decontamination Assessing microplastic and nanoplastic contamination in bird lungs: evidence of ecological risks and bioindicator potential DNA Methylation Regulates Somatic Stress Memory and Mediates Plasticity during Acclimation to Repeated Sulfide Stress in Urechis unicinctus
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1