Amol Upadhye, Markus R. Mosbech, Giovanni Pierobon and Yvonne Y.Y. Wong
{"title":"Everything hot everywhere all at once: neutrinos and hot dark matter as a single effective species","authors":"Amol Upadhye, Markus R. Mosbech, Giovanni Pierobon and Yvonne Y.Y. Wong","doi":"10.1088/1475-7516/2025/01/077","DOIUrl":null,"url":null,"abstract":"Observational cosmology is rapidly closing in on a measurement of the sum Mν of neutrino masses, at least in the simplest cosmologies, while opening the door to probes of non-standard hot dark matter (HDM) models. By extending the method of effective distributions, we show that any collection of HDM species, with arbitrary masses, temperatures, and distribution functions, including massive neutrinos, may be represented as a single effective HDM species. Implementing this method in the FlowsForTheMasses non-linear perturbation theory for free-streaming particles, we study non-standard HDM models that contain thermal QCD axions or generic bosons in addition to standard neutrinos, as well as non-standard neutrino models wherein either the distribution function of the neutrinos or their temperature is changed. Along the way, we substantially improve the accuracy of this perturbation theory at low masses, bringing it into agreement with the high-resolution TianNu neutrino N-body simulation to ≈ 2% at k = 0.1 h/Mpc and to ≤ 21% over the range k ≤ 1 h/Mpc. We accurately reproduce the results of simulations including axions and neutrinos of multiple masses. Studying the differences between the normal, inverted, and degenerate neutrino mass orderings on their non-linear power, we quantify the error in the common approximation of degenerate masses. We release our code publicly at http://github.com/upadhye/FlowsForTheMassesII.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":"30 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cosmology and Astroparticle Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1475-7516/2025/01/077","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Observational cosmology is rapidly closing in on a measurement of the sum Mν of neutrino masses, at least in the simplest cosmologies, while opening the door to probes of non-standard hot dark matter (HDM) models. By extending the method of effective distributions, we show that any collection of HDM species, with arbitrary masses, temperatures, and distribution functions, including massive neutrinos, may be represented as a single effective HDM species. Implementing this method in the FlowsForTheMasses non-linear perturbation theory for free-streaming particles, we study non-standard HDM models that contain thermal QCD axions or generic bosons in addition to standard neutrinos, as well as non-standard neutrino models wherein either the distribution function of the neutrinos or their temperature is changed. Along the way, we substantially improve the accuracy of this perturbation theory at low masses, bringing it into agreement with the high-resolution TianNu neutrino N-body simulation to ≈ 2% at k = 0.1 h/Mpc and to ≤ 21% over the range k ≤ 1 h/Mpc. We accurately reproduce the results of simulations including axions and neutrinos of multiple masses. Studying the differences between the normal, inverted, and degenerate neutrino mass orderings on their non-linear power, we quantify the error in the common approximation of degenerate masses. We release our code publicly at http://github.com/upadhye/FlowsForTheMassesII.
期刊介绍:
Journal of Cosmology and Astroparticle Physics (JCAP) encompasses theoretical, observational and experimental areas as well as computation and simulation. The journal covers the latest developments in the theory of all fundamental interactions and their cosmological implications (e.g. M-theory and cosmology, brane cosmology). JCAP''s coverage also includes topics such as formation, dynamics and clustering of galaxies, pre-galactic star formation, x-ray astronomy, radio astronomy, gravitational lensing, active galactic nuclei, intergalactic and interstellar matter.