Environmentally Friendly Regeneration of Graphite from Spent Lithium-Ion Batteries for Sustainable Anode Material Reuse

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Journal of Materials Chemistry A Pub Date : 2025-01-17 DOI:10.1039/d4ta07618d
Subramanian Natarajan, Tomotaro Mae, Heng Yi Teah, Hiroki Sakurai, Suguru Noda
{"title":"Environmentally Friendly Regeneration of Graphite from Spent Lithium-Ion Batteries for Sustainable Anode Material Reuse","authors":"Subramanian Natarajan, Tomotaro Mae, Heng Yi Teah, Hiroki Sakurai, Suguru Noda","doi":"10.1039/d4ta07618d","DOIUrl":null,"url":null,"abstract":"The graphite industry is currently facing significant supply and demand issues owing to the sudden rise in electric vehicle (EV) usage; however, the lithium-ion batteries (LIB) that power such vehicles will be landfilled or incinerated at the end of their lifetime, raising questions concerning their environmental impact and resource reuse. The recycling of spent LIBs using economical and environmentally sustainable technologies is therefore required. We therefore employ three different strategies to regenerate graphite from spent LIBs as an anode material in new LIBs. Acid (Gr-AcOH), alkali (Gr-KOH), and gas (Gr-N2) treatments are used to reconstruct the structure of the spent graphite, which is then evaluated as an anode material in a half-cell configuration. The graphite regenerated by the Gr-AcOH, Gr-KOH, and Gr-N2 techniques exhibit delithiation capacities of 328, 325, and 338 mA h ggr–1, respectively, after 150 cycles, with a Coulombic efficiency of ~99.9%. These delithiation capacities are considerably higher than that of untreated spent graphite (120 mA h ggr–1, where 'gr' in the subscript stands for graphite) and close to that of commercial graphite (345 mA h ggr–1). Additionally, our life cycle assessment estimates the impact of graphite regeneration ranges from 0.27 to 3.53 kg CO2e per kg graphite, assuming a pilot-scale operation using 100 kg graphite operation. This study demonstrates the suitability of environmentally sustainable graphite recycling for LIB applications, and the implementation of circular approaches for battery anode recycling.","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":"30 1","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4ta07618d","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The graphite industry is currently facing significant supply and demand issues owing to the sudden rise in electric vehicle (EV) usage; however, the lithium-ion batteries (LIB) that power such vehicles will be landfilled or incinerated at the end of their lifetime, raising questions concerning their environmental impact and resource reuse. The recycling of spent LIBs using economical and environmentally sustainable technologies is therefore required. We therefore employ three different strategies to regenerate graphite from spent LIBs as an anode material in new LIBs. Acid (Gr-AcOH), alkali (Gr-KOH), and gas (Gr-N2) treatments are used to reconstruct the structure of the spent graphite, which is then evaluated as an anode material in a half-cell configuration. The graphite regenerated by the Gr-AcOH, Gr-KOH, and Gr-N2 techniques exhibit delithiation capacities of 328, 325, and 338 mA h ggr–1, respectively, after 150 cycles, with a Coulombic efficiency of ~99.9%. These delithiation capacities are considerably higher than that of untreated spent graphite (120 mA h ggr–1, where 'gr' in the subscript stands for graphite) and close to that of commercial graphite (345 mA h ggr–1). Additionally, our life cycle assessment estimates the impact of graphite regeneration ranges from 0.27 to 3.53 kg CO2e per kg graphite, assuming a pilot-scale operation using 100 kg graphite operation. This study demonstrates the suitability of environmentally sustainable graphite recycling for LIB applications, and the implementation of circular approaches for battery anode recycling.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Materials Chemistry A
Journal of Materials Chemistry A CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
19.50
自引率
5.00%
发文量
1892
审稿时长
1.5 months
期刊介绍: The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.
期刊最新文献
MnTiO3 as a carbon-free cathode for rechargeable Li–O2 batteries Multifunctional AgNWs-Fe3O4/ANF composite films with a Janus-like structure for outstanding electromagnetic interference shielding and thermal management Enabling ionic transport in Li3AlP2: the roles of defects and disorder Effects of Ce co-doping to A site of Sm0.5-xSr0.5CoO3±δ for high performance air electrode of solid oxide reversible cells Environmentally Friendly Regeneration of Graphite from Spent Lithium-Ion Batteries for Sustainable Anode Material Reuse
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1