Enabling ionic transport in Li3AlP2: the roles of defects and disorder†

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Journal of Materials Chemistry A Pub Date : 2025-01-17 DOI:10.1039/D4TA04347B
Ji Hu, Alexander G. Squires, Jędrzej Kondek, Michael J. Johnson, Arthur B. Youd, Pooja Vadhva, Partha P. Paul, Philip J. Withers, Marco Di Michiel, Dean S. Keeble, Michael Ryan Hansen, David O. Scanlon and Alexander J. E. Rettie
{"title":"Enabling ionic transport in Li3AlP2: the roles of defects and disorder†","authors":"Ji Hu, Alexander G. Squires, Jędrzej Kondek, Michael J. Johnson, Arthur B. Youd, Pooja Vadhva, Partha P. Paul, Philip J. Withers, Marco Di Michiel, Dean S. Keeble, Michael Ryan Hansen, David O. Scanlon and Alexander J. E. Rettie","doi":"10.1039/D4TA04347B","DOIUrl":null,"url":null,"abstract":"<p >Lithium phosphides are an emerging class of Li<small><sup>+</sup></small> ion conductors for solid state battery applications. Despite potentially favorable characteristics as a solid electrolyte, stoichiometric crystalline Li<small><sub>3</sub></small>AlP<small><sub>2</sub></small> has been reported to be an ionic insulator. Using a combined computational and experimental approach, we investigate the underlying reasons for this and show that ion transport can be induced <em>via</em> defects and structural disorder in this material. Lithium vacancies are shown to promote diffusion, and a low barrier to Li<small><sup>+</sup></small> hopping of 0.2–0.3 eV is revealed by both simulations and experiment. However, polycrystalline pellets exhibit low ionic conductivity (≈10<small><sup>−8</sup></small> S cm<small><sup>−1</sup></small>) at room temperature, attributed to crystalline anisotropy and the presence of resistive grain boundaries. These aspects can be overcome in nanocrystalline Li<small><sub>3</sub></small>AlP<small><sub>2</sub></small>, where ionic conductivity values approaching 10<small><sup>−6</sup></small> S cm<small><sup>−1</sup></small> and low electronic conductivities are achieved. This approach, leveraging both defects and structural disorder, should have relevance to the discovery of new, or previously overlooked, ion conducting materials.</p>","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":" 9","pages":" 6427-6439"},"PeriodicalIF":10.7000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ta/d4ta04347b?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ta/d4ta04347b","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Lithium phosphides are an emerging class of Li+ ion conductors for solid state battery applications. Despite potentially favorable characteristics as a solid electrolyte, stoichiometric crystalline Li3AlP2 has been reported to be an ionic insulator. Using a combined computational and experimental approach, we investigate the underlying reasons for this and show that ion transport can be induced via defects and structural disorder in this material. Lithium vacancies are shown to promote diffusion, and a low barrier to Li+ hopping of 0.2–0.3 eV is revealed by both simulations and experiment. However, polycrystalline pellets exhibit low ionic conductivity (≈10−8 S cm−1) at room temperature, attributed to crystalline anisotropy and the presence of resistive grain boundaries. These aspects can be overcome in nanocrystalline Li3AlP2, where ionic conductivity values approaching 10−6 S cm−1 and low electronic conductivities are achieved. This approach, leveraging both defects and structural disorder, should have relevance to the discovery of new, or previously overlooked, ion conducting materials.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Li3AlP2中离子传输的实现:缺陷和无序的作用
磷化锂是一类新兴的锂离子导体,用于固态电池的应用。尽管作为固体电解质具有潜在的有利特性,但化学计量晶体Li3AlP2已被报道为离子绝缘体。使用计算和实验相结合的方法,我们研究了这种情况的潜在原因,并表明离子传输可以通过这种材料中的缺陷和结构紊乱诱导。模拟和实验均表明,锂空位有利于扩散,且对Li+跃迁具有0.2 ~ 0.3 eV的低势垒。然而,由于晶体各向异性和电阻晶界的存在,多晶颗粒在室温下表现出低离子电导率(≈10−8 S cm−1)。这些方面可以在纳米晶Li3AlP2中克服,其中离子电导率值接近10−6 S cm−1,并且实现了低电子电导率。这种利用缺陷和结构紊乱的方法,应该与发现新的或以前被忽视的离子导电材料有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Materials Chemistry A
Journal of Materials Chemistry A CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
19.50
自引率
5.00%
发文量
1892
审稿时长
1.5 months
期刊介绍: The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.
期刊最新文献
Band energy engineering: precise regulation of P-band centers to reasonably construct S-scheme heterojunctions for boosting photocatalytic hydrogen production Hybrid Central Substitution of Acceptor Boosts Efficient Near-Infrared Organic Photovoltaics Proton transport enhanced by octahedral distortion and built-in electric field in PMN-TiO2 heterointerface Zeolitic Imidazolate Frameworks Enhanced Conductive Nanocomposite Hydrogels with High Stretchability and Low Hysteresis for Self-Powered Multifunctional Sensors Hydrophobic, Ionically Conductive, Self-adhesive and Fully Recyclable Eutectogels for Stretchable Wearable Sensors and Triboelectric Nanogenerators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1