Hydrochemical facies distribution, controlling mechanisms and Natural background concentrations of major pollutants in Ganga-Yamuna Interfluve Aquifer, India

IF 7.6 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Environmental Pollution Pub Date : 2025-01-17 DOI:10.1016/j.envpol.2025.125694
Izrar Ahmad, Saif Ahmad Khan, Mohd Shoeb, Saiful Islam, Md. Afzal Khan
{"title":"Hydrochemical facies distribution, controlling mechanisms and Natural background concentrations of major pollutants in Ganga-Yamuna Interfluve Aquifer, India","authors":"Izrar Ahmad, Saif Ahmad Khan, Mohd Shoeb, Saiful Islam, Md. Afzal Khan","doi":"10.1016/j.envpol.2025.125694","DOIUrl":null,"url":null,"abstract":"Evolution of groundwater genesis in Central Ganga Plain (CGP) is scrutinized with due consideration of hydrochemical and hydrodynamic environment within Quaternary alluviums. Wide variation in hydrochemical facies in CGP indicates a dynamic hydro-geochemical environment influenced from the seasonal rainfall, return flows, canal seepages, and anthropogenic activities. The Ca-HCO<sub>3</sub> facies retaining meteoric nature is characterized by shallow water levels, high recharge rate, high hydraulic conductivity, low salinity and trace elemental load. A noticeable increase in salinity and trace elemental load is reported as groundwater evolved from Ca-HCO<sub>3</sub> to Ca-Mg-HCO<sub>3</sub>, Ca-Mg-Cl-SO<sub>4</sub>, Ca-Na-HCO<sub>3</sub> type and Na-Cl-SO<sub>4</sub> types. The hydrochemical facies and bivariate plots infer Silicate and Carbonate weathering in a redox-ion exchange environment. The varying concentrations of radio-nuclides like U and Th in different hydrochemical facies depicts the migration attributed to oxidizing-reducing environment and acid-alkaline conditions. Aquifer heterogeneity and spatial variability of groundwater recharge sources including rainfall, return flows, canal seepages imparts changes that make it difficult to appoint sources. The shallow groundwater recharge zones are depleted in heavier isotopes (δ<sup>1</sup>⁸O: -12‰ to -7‰) advocating recharge primarily from precipitation and surface water. The concomitant occurrences of HCO<sub>3</sub>, Sr, and SiO<sub>2</sub> ascribe genesis from geogenic source more precisely the silicate weathering. Reverse geochemical modelling shows that groundwater is saturated with chalcedony, quartz, barite, talc and under-saturated with anhydrite, gypsum, halite, and sylvite. Analyses including contamination evolution and PPI, point that NO<sub>3</sub>, Cl, SO<sub>4</sub>, Sr, As, Mn are common pollutants stemming particularly from agricultural activities and industrial effluents pose a serious threat to groundwater sustainability.","PeriodicalId":311,"journal":{"name":"Environmental Pollution","volume":"5 1","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Pollution","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.envpol.2025.125694","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Evolution of groundwater genesis in Central Ganga Plain (CGP) is scrutinized with due consideration of hydrochemical and hydrodynamic environment within Quaternary alluviums. Wide variation in hydrochemical facies in CGP indicates a dynamic hydro-geochemical environment influenced from the seasonal rainfall, return flows, canal seepages, and anthropogenic activities. The Ca-HCO3 facies retaining meteoric nature is characterized by shallow water levels, high recharge rate, high hydraulic conductivity, low salinity and trace elemental load. A noticeable increase in salinity and trace elemental load is reported as groundwater evolved from Ca-HCO3 to Ca-Mg-HCO3, Ca-Mg-Cl-SO4, Ca-Na-HCO3 type and Na-Cl-SO4 types. The hydrochemical facies and bivariate plots infer Silicate and Carbonate weathering in a redox-ion exchange environment. The varying concentrations of radio-nuclides like U and Th in different hydrochemical facies depicts the migration attributed to oxidizing-reducing environment and acid-alkaline conditions. Aquifer heterogeneity and spatial variability of groundwater recharge sources including rainfall, return flows, canal seepages imparts changes that make it difficult to appoint sources. The shallow groundwater recharge zones are depleted in heavier isotopes (δ1⁸O: -12‰ to -7‰) advocating recharge primarily from precipitation and surface water. The concomitant occurrences of HCO3, Sr, and SiO2 ascribe genesis from geogenic source more precisely the silicate weathering. Reverse geochemical modelling shows that groundwater is saturated with chalcedony, quartz, barite, talc and under-saturated with anhydrite, gypsum, halite, and sylvite. Analyses including contamination evolution and PPI, point that NO3, Cl, SO4, Sr, As, Mn are common pollutants stemming particularly from agricultural activities and industrial effluents pose a serious threat to groundwater sustainability.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Environmental Pollution
Environmental Pollution 环境科学-环境科学
CiteScore
16.00
自引率
6.70%
发文量
2082
审稿时长
2.9 months
期刊介绍: Environmental Pollution is an international peer-reviewed journal that publishes high-quality research papers and review articles covering all aspects of environmental pollution and its impacts on ecosystems and human health. Subject areas include, but are not limited to: • Sources and occurrences of pollutants that are clearly defined and measured in environmental compartments, food and food-related items, and human bodies; • Interlinks between contaminant exposure and biological, ecological, and human health effects, including those of climate change; • Contaminants of emerging concerns (including but not limited to antibiotic resistant microorganisms or genes, microplastics/nanoplastics, electronic wastes, light, and noise) and/or their biological, ecological, or human health effects; • Laboratory and field studies on the remediation/mitigation of environmental pollution via new techniques and with clear links to biological, ecological, or human health effects; • Modeling of pollution processes, patterns, or trends that is of clear environmental and/or human health interest; • New techniques that measure and examine environmental occurrences, transport, behavior, and effects of pollutants within the environment or the laboratory, provided that they can be clearly used to address problems within regional or global environmental compartments.
期刊最新文献
Bifenthrin causes disturbance in mitochondrial dynamics and bioenergetic system in human embryonic kidney cells (HEK 293) Hydrochemical facies distribution, controlling mechanisms and Natural background concentrations of major pollutants in Ganga-Yamuna Interfluve Aquifer, India A brief history of microplastics effect testing: Guidance and prospect Tracheal, bronchus, and lung cancer mortality and air pollution exposure in Tuscany, Italy: Bayesian Health Impact Assessment and Global Sensitivity Analysis on a sub-regional scale Synergistic effect of synthetic phenolic antioxidant exposure and overweight/obesity on altered sex hormone levels: normoglycemic rural Chinese population
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1