Amir Hajibabaei, William J. Baldwin, Gábor Csányi, Stephen J. Cox
{"title":"Symmetry Breaking in the Superionic Phase of Silver Iodide","authors":"Amir Hajibabaei, William J. Baldwin, Gábor Csányi, Stephen J. Cox","doi":"10.1103/physrevlett.134.026306","DOIUrl":null,"url":null,"abstract":"In the superionic phase of silver iodide, we observe a distorted tetragonal structure characterized by symmetry breaking in the cation distribution. This phase competes with the well known bcc phase with a symmetric cation distribution, at an energetic cost of only a few meV</a:mi>/</a:mo>atom</a:mi></a:mrow></a:math>. The small energy difference suggests that these competing structures may both be thermally accessible near the superionic transition temperature. We also find that the distribution of silver ions depends on the low-temperature parent polymorph, with memory persisting in the superionic phase on the nanosecond timescales accessible in our simulations. Furthermore, simulations on the order of 100 ns reveal that even at temperatures where the bcc phase is stable, significant fluctuations toward the tetragonal lattice structure remain. Our results are consistent with many “anomalous” experimental observations and offer a molecular mechanism for the “memory effect” in silver iodide. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"16 1","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevlett.134.026306","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In the superionic phase of silver iodide, we observe a distorted tetragonal structure characterized by symmetry breaking in the cation distribution. This phase competes with the well known bcc phase with a symmetric cation distribution, at an energetic cost of only a few meV/atom. The small energy difference suggests that these competing structures may both be thermally accessible near the superionic transition temperature. We also find that the distribution of silver ions depends on the low-temperature parent polymorph, with memory persisting in the superionic phase on the nanosecond timescales accessible in our simulations. Furthermore, simulations on the order of 100 ns reveal that even at temperatures where the bcc phase is stable, significant fluctuations toward the tetragonal lattice structure remain. Our results are consistent with many “anomalous” experimental observations and offer a molecular mechanism for the “memory effect” in silver iodide. Published by the American Physical Society2025
期刊介绍:
Physical review letters(PRL)covers the full range of applied, fundamental, and interdisciplinary physics research topics:
General physics, including statistical and quantum mechanics and quantum information
Gravitation, astrophysics, and cosmology
Elementary particles and fields
Nuclear physics
Atomic, molecular, and optical physics
Nonlinear dynamics, fluid dynamics, and classical optics
Plasma and beam physics
Condensed matter and materials physics
Polymers, soft matter, biological, climate and interdisciplinary physics, including networks