Changes in methanogenic performance and microbial community during gradual transition from co-digestion with food waste to mono-digestion of rice straw
{"title":"Changes in methanogenic performance and microbial community during gradual transition from co-digestion with food waste to mono-digestion of rice straw","authors":"Yaqian Liu, Ryoya Watanabe, Qian Li, Yutong Luo, Naohito Tsuzuki, Yu Qin, Yu-You Li","doi":"10.1016/j.biortech.2025.132072","DOIUrl":null,"url":null,"abstract":"This study investigated the performance and phase-specific characteristics of mesophilic co-digestion of food waste (FW) with rice straw (RS) at different RS proportions (40 %, 60 %, and 80 %), as well as mono-digestion of RS. The system achieved optimal performance at 40 % RS content, with a methane yield of 383.8 mL/g-VS and cellulose removal efficiency exceeding 75 %. When RS content increased beyond 60 %, process performance declined notably. At 80 % RS ratio, an imbalance between acidogenesis and methanogenesis led to volatile fatty acids (VFAs) accumulation (1500 mg-COD/L), compromising both efficiency and stability. Notably, during the transition to mono-digestion, the system maintained stable operation, characterized by increased abundance of functional enzymes associated with cellulosic substance hydrolysis and acidogenesis. This enhanced enzymatic activity may be attributed to the microbial adaptation induced by previous co-digestion with FW. These findings provide valuable insights for optimizing mesophilic RS digestion through strategic co-digestion approaches.","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":"45 1","pages":""},"PeriodicalIF":9.7000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresource Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.biortech.2025.132072","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigated the performance and phase-specific characteristics of mesophilic co-digestion of food waste (FW) with rice straw (RS) at different RS proportions (40 %, 60 %, and 80 %), as well as mono-digestion of RS. The system achieved optimal performance at 40 % RS content, with a methane yield of 383.8 mL/g-VS and cellulose removal efficiency exceeding 75 %. When RS content increased beyond 60 %, process performance declined notably. At 80 % RS ratio, an imbalance between acidogenesis and methanogenesis led to volatile fatty acids (VFAs) accumulation (1500 mg-COD/L), compromising both efficiency and stability. Notably, during the transition to mono-digestion, the system maintained stable operation, characterized by increased abundance of functional enzymes associated with cellulosic substance hydrolysis and acidogenesis. This enhanced enzymatic activity may be attributed to the microbial adaptation induced by previous co-digestion with FW. These findings provide valuable insights for optimizing mesophilic RS digestion through strategic co-digestion approaches.
期刊介绍:
Bioresource Technology publishes original articles, review articles, case studies, and short communications covering the fundamentals, applications, and management of bioresource technology. The journal seeks to advance and disseminate knowledge across various areas related to biomass, biological waste treatment, bioenergy, biotransformations, bioresource systems analysis, and associated conversion or production technologies.
Topics include:
• Biofuels: liquid and gaseous biofuels production, modeling and economics
• Bioprocesses and bioproducts: biocatalysis and fermentations
• Biomass and feedstocks utilization: bioconversion of agro-industrial residues
• Environmental protection: biological waste treatment
• Thermochemical conversion of biomass: combustion, pyrolysis, gasification, catalysis.