{"title":"PEGylated Ultrasmall Iron Oxide Nanoparticles as MRI Contrast Agents for Vascular Imaging and Real-Time Monitoring","authors":"Kuan Lu, Ruru Zhang, Hongzhao Wang, Cang Li, Zhe Yang, Keyang Xu, Xiaoyi Cao, Ning Wang, Wu Cai, Jianfeng Zeng, Mingyuan Gao","doi":"10.1021/acsnano.4c13356","DOIUrl":null,"url":null,"abstract":"Accurate imaging evaluations of pre- and post-treatment of cardiovascular diseases are pivotal for effective clinical interventions and improved patient outcomes. However, current imaging methods lack real-time monitoring capabilities with a high contrast and resolution during treatments. This study introduces PEGylated ultrasmall iron oxide nanoparticles (PUSIONPs), which have undergone comprehensive safety evaluations, boasting an <i>r</i><sub>1</sub> value of 6.31 mM<sup>–1</sup> s<sup>–1</sup>, for contrast-enhanced magnetic resonance angiography (MRA). Systematic comparisons against common clinical methods in rabbits reveal that PUSIONPs-enhanced MRA exhibited improved vascular contrast, clearer vascular boundaries, and superior vessel resolution. Moreover, owing to their nanosize, PUSIONPs demonstrate significantly prolonged blood circulation compared to small molecular contrast agents such as Magnevist and Ultravist. This extended circulation enables captivating real-time monitoring of thrombolysis treatment for up to 4 h in rabbit models postsingle contrast agent injection. Additionally, in larger animal models such as beagles and Bama minipigs, PUSIONPs-enhanced MRA also showcases superior contrast effects, boundary delineation, and microvessel visualization, underscoring their potential to transform cardiovascular imaging, particularly in real-time monitoring and high-resolution visualization during treatment processes.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"27 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c13356","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate imaging evaluations of pre- and post-treatment of cardiovascular diseases are pivotal for effective clinical interventions and improved patient outcomes. However, current imaging methods lack real-time monitoring capabilities with a high contrast and resolution during treatments. This study introduces PEGylated ultrasmall iron oxide nanoparticles (PUSIONPs), which have undergone comprehensive safety evaluations, boasting an r1 value of 6.31 mM–1 s–1, for contrast-enhanced magnetic resonance angiography (MRA). Systematic comparisons against common clinical methods in rabbits reveal that PUSIONPs-enhanced MRA exhibited improved vascular contrast, clearer vascular boundaries, and superior vessel resolution. Moreover, owing to their nanosize, PUSIONPs demonstrate significantly prolonged blood circulation compared to small molecular contrast agents such as Magnevist and Ultravist. This extended circulation enables captivating real-time monitoring of thrombolysis treatment for up to 4 h in rabbit models postsingle contrast agent injection. Additionally, in larger animal models such as beagles and Bama minipigs, PUSIONPs-enhanced MRA also showcases superior contrast effects, boundary delineation, and microvessel visualization, underscoring their potential to transform cardiovascular imaging, particularly in real-time monitoring and high-resolution visualization during treatment processes.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.