Effects of Atmospheric Pollutants on Volatile-Mediated Insect Ecosystem Services

IF 10.8 1区 环境科学与生态学 Q1 BIODIVERSITY CONSERVATION Global Change Biology Pub Date : 2025-01-17 DOI:10.1111/gcb.70034
Delia M. Pinto-Zevallos, Oksana Skaldina, James D. Blande
{"title":"Effects of Atmospheric Pollutants on Volatile-Mediated Insect Ecosystem Services","authors":"Delia M. Pinto-Zevallos, Oksana Skaldina, James D. Blande","doi":"10.1111/gcb.70034","DOIUrl":null,"url":null,"abstract":"Primary and secondary atmospheric pollutants, including carbon monoxide (CO), carbon dioxide (CO<sub>2</sub>), nitrogen oxides (NO<sub><i>x</i></sub>), ozone (O<sub>3</sub>), sulphur dioxide (SO<sub>2</sub>) and particulate matter (PM<sub>2.5</sub>/PM<sub>10</sub>) with associated heavy metals (HMs) and micro- and nanoplastics (MPs/NPs), have the potential to influence and alter interspecific interactions involving insects that are responsible for providing essential ecosystem services (ESs). Given that insects rely on olfactory cues for vital processes such as locating mates, food sources and oviposition sites, volatile organic compounds (VOCs) are of paramount importance in interactions involving insects. While gaseous pollutants reduce the lifespan of individual compounds that act as olfactory cues, gaseous and particulate pollutants can alter their biosynthesis and emission and exert a direct effect on the olfactory system of insects. Consequently, air pollutants can affect ecosystem functioning and the services regulated by plant–insect interactions. This review examines the already identified and potential impacts of air pollutants on different aspects of VOC-mediated plant–insect interactions underlying a range of insect ES. Furthermore, we investigate the potential susceptibility of insects to future environmental changes and the adaptive mechanisms they may employ to efficiently detect odours. The current body of knowledge on the effects of air pollutants on key interspecific interactions is biased towards and limited to a few pollinators, herbivores and parasitoids on model plants. There is a notable absence of research on decomposers and seed dispersers. With exception of O<sub>3</sub> and NO<sub><i>x</i></sub>, the effects of some widespread and emerging environmental pollutants, such as secondary organic aerosols (SOAs), SO<sub>2</sub>, HMs, PM and MPs/NPs, remain largely unexplored. It is recommended that the identified knowledge gaps be addressed in future research, with the aim of designing effective mitigation strategies for the adverse effects in question and developing robust conservation frameworks.","PeriodicalId":175,"journal":{"name":"Global Change Biology","volume":"45 1","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Change Biology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1111/gcb.70034","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0

Abstract

Primary and secondary atmospheric pollutants, including carbon monoxide (CO), carbon dioxide (CO2), nitrogen oxides (NOx), ozone (O3), sulphur dioxide (SO2) and particulate matter (PM2.5/PM10) with associated heavy metals (HMs) and micro- and nanoplastics (MPs/NPs), have the potential to influence and alter interspecific interactions involving insects that are responsible for providing essential ecosystem services (ESs). Given that insects rely on olfactory cues for vital processes such as locating mates, food sources and oviposition sites, volatile organic compounds (VOCs) are of paramount importance in interactions involving insects. While gaseous pollutants reduce the lifespan of individual compounds that act as olfactory cues, gaseous and particulate pollutants can alter their biosynthesis and emission and exert a direct effect on the olfactory system of insects. Consequently, air pollutants can affect ecosystem functioning and the services regulated by plant–insect interactions. This review examines the already identified and potential impacts of air pollutants on different aspects of VOC-mediated plant–insect interactions underlying a range of insect ES. Furthermore, we investigate the potential susceptibility of insects to future environmental changes and the adaptive mechanisms they may employ to efficiently detect odours. The current body of knowledge on the effects of air pollutants on key interspecific interactions is biased towards and limited to a few pollinators, herbivores and parasitoids on model plants. There is a notable absence of research on decomposers and seed dispersers. With exception of O3 and NOx, the effects of some widespread and emerging environmental pollutants, such as secondary organic aerosols (SOAs), SO2, HMs, PM and MPs/NPs, remain largely unexplored. It is recommended that the identified knowledge gaps be addressed in future research, with the aim of designing effective mitigation strategies for the adverse effects in question and developing robust conservation frameworks.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Global Change Biology
Global Change Biology 环境科学-环境科学
CiteScore
21.50
自引率
5.20%
发文量
497
审稿时长
3.3 months
期刊介绍: Global Change Biology is an environmental change journal committed to shaping the future and addressing the world's most pressing challenges, including sustainability, climate change, environmental protection, food and water safety, and global health. Dedicated to fostering a profound understanding of the impacts of global change on biological systems and offering innovative solutions, the journal publishes a diverse range of content, including primary research articles, technical advances, research reviews, reports, opinions, perspectives, commentaries, and letters. Starting with the 2024 volume, Global Change Biology will transition to an online-only format, enhancing accessibility and contributing to the evolution of scholarly communication.
期刊最新文献
Double Trouble for Native Species Under Climate Change: Habitat Loss and Increased Environmental Overlap With Non‐Native Species Considering Multiecosystem Trade-Offs Is Critical When Leveraging Systematic Conservation Planning for Restoration Effects of Atmospheric Pollutants on Volatile-Mediated Insect Ecosystem Services Exploring the Interface Between Planetary Boundaries and Palaeoecology Earthquakes Have Accelerated the Carbon Dioxide Emission Rate of Soils on the Qinghai‐Tibet Plateau
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1