{"title":"SCARB1 links cholesterol metabolism-mediated ferroptosis inhibition to radioresistance in tumor cells","authors":"Xiaojuan Mao, Jingwen Xiong, Mengjiao Cai, Chao Wang, Qian He, Binxian Wang, Jing Chen, Zhengtao Xiao, Baofeng Wang, Suxia Han, Yilei Zhang","doi":"10.1016/j.jare.2025.01.026","DOIUrl":null,"url":null,"abstract":"<h3>Introduction</h3>Ferroptosis is an iron-dependent form of cell death triggered by the excessive accumulation of lipid peroxides. Understanding the regulatory mechanisms of ferroptosis and developing strategies to target this process hold significant clinical applications in tumor therapy.<h3>Objective</h3>Our study aims to search for novel candidate genes involved in the regulation of ferroptosis and to investigate their mechanism of action in ferroptosis and tumor therapy.<h3>Methods</h3>We employed a CRISPR-Cas9 library to perform a genome-wide screen under ferroptosis inducer treatment conditions, revealing Scavenger Receptor Class B Member 1(SCARB1) as a novel candidate gene involved in ferroptosis regulation. Subsequently, lipidomic analyses, metabolic interventions, and relevant cellular experimental analyses were performed to elucidate the role of SCARB1 in ferroptosis, lipid peroxidation, and tumor therapy.<h3>Results</h3>Our study confirmed that SCARB1 significantly inhibits ferroptosis and lipid peroxidation induced by ferroptosis inducers. Mechanistically, SCARB1 inhibits ferroptosis through the regulation of cholesterol metabolism, and the upregulation of CoQ10 level is demonstrated to mediate the suppression of ferroptosis by SCARB1 after lipidomic analysis and metabolic intervention. Interestingly, SCARB1 exerts a tumor suppressive effect regarding tumor growth, migration and invasion, which is possibly independent of ferroptosis regulation. However, SCARB1 promotes radioresistance through the upregulation of cholesterol metabolism and inhibition of ferroptosis, while the combination of ferroptosis inducers can overcome radioresistance in tumor cells with high SCARB1 expression.<h3>Conclusion</h3>This study establishes a theoretical foundation for the regulation of ferroptosis by SCARB1 and highlights the potential of targeting lipid metabolism to overcome radioresistance in cancer therapy. The identification of SCARB1 as a key player in ferroptosis and its dual role in tumor suppression and radioresistance provides new avenues for therapeutic intervention in cancer treatment.","PeriodicalId":14952,"journal":{"name":"Journal of Advanced Research","volume":"16 1","pages":""},"PeriodicalIF":11.4000,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Research","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1016/j.jare.2025.01.026","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction
Ferroptosis is an iron-dependent form of cell death triggered by the excessive accumulation of lipid peroxides. Understanding the regulatory mechanisms of ferroptosis and developing strategies to target this process hold significant clinical applications in tumor therapy.
Objective
Our study aims to search for novel candidate genes involved in the regulation of ferroptosis and to investigate their mechanism of action in ferroptosis and tumor therapy.
Methods
We employed a CRISPR-Cas9 library to perform a genome-wide screen under ferroptosis inducer treatment conditions, revealing Scavenger Receptor Class B Member 1(SCARB1) as a novel candidate gene involved in ferroptosis regulation. Subsequently, lipidomic analyses, metabolic interventions, and relevant cellular experimental analyses were performed to elucidate the role of SCARB1 in ferroptosis, lipid peroxidation, and tumor therapy.
Results
Our study confirmed that SCARB1 significantly inhibits ferroptosis and lipid peroxidation induced by ferroptosis inducers. Mechanistically, SCARB1 inhibits ferroptosis through the regulation of cholesterol metabolism, and the upregulation of CoQ10 level is demonstrated to mediate the suppression of ferroptosis by SCARB1 after lipidomic analysis and metabolic intervention. Interestingly, SCARB1 exerts a tumor suppressive effect regarding tumor growth, migration and invasion, which is possibly independent of ferroptosis regulation. However, SCARB1 promotes radioresistance through the upregulation of cholesterol metabolism and inhibition of ferroptosis, while the combination of ferroptosis inducers can overcome radioresistance in tumor cells with high SCARB1 expression.
Conclusion
This study establishes a theoretical foundation for the regulation of ferroptosis by SCARB1 and highlights the potential of targeting lipid metabolism to overcome radioresistance in cancer therapy. The identification of SCARB1 as a key player in ferroptosis and its dual role in tumor suppression and radioresistance provides new avenues for therapeutic intervention in cancer treatment.
期刊介绍:
Journal of Advanced Research (J. Adv. Res.) is an applied/natural sciences, peer-reviewed journal that focuses on interdisciplinary research. The journal aims to contribute to applied research and knowledge worldwide through the publication of original and high-quality research articles in the fields of Medicine, Pharmaceutical Sciences, Dentistry, Physical Therapy, Veterinary Medicine, and Basic and Biological Sciences.
The following abstracting and indexing services cover the Journal of Advanced Research: PubMed/Medline, Essential Science Indicators, Web of Science, Scopus, PubMed Central, PubMed, Science Citation Index Expanded, Directory of Open Access Journals (DOAJ), and INSPEC.