A functional cascading of lignin modification via repression of caffeic acid O-methyltransferase for bioproduction and anti-oxidation in rice

IF 11.4 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Journal of Advanced Research Pub Date : 2025-02-04 DOI:10.1016/j.jare.2025.01.048
Hua Yu, Guifen Zhang, Jingyuan Liu, Peng Liu, Hao Peng, Zhipeng Teng, Yong Li, Xifeng Ren, Chunxiang Fu, Jingfeng Tang, Mi Li, Yanting Wang, Lingqiang Wang, Liangcai Peng
{"title":"A functional cascading of lignin modification via repression of caffeic acid O-methyltransferase for bioproduction and anti-oxidation in rice","authors":"Hua Yu, Guifen Zhang, Jingyuan Liu, Peng Liu, Hao Peng, Zhipeng Teng, Yong Li, Xifeng Ren, Chunxiang Fu, Jingfeng Tang, Mi Li, Yanting Wang, Lingqiang Wang, Liangcai Peng","doi":"10.1016/j.jare.2025.01.048","DOIUrl":null,"url":null,"abstract":"<h3>Introduction</h3>Crop straws provide substantial biomass resources that are transformable for sustainable biofuels and valuable bioproducts. However, the natural lignocellulose recalcitrance results in an expensive biomass process and secondary waste liberation. As lignin is a major recalcitrant factor, genetic engineering of lignin biosynthesis is increasingly being implemented in bioenergy crops, but much remains unclear about the desired lignocellulose alteration and resulting function.<h3>Objectives</h3>This study attempted to explore the mechanisms of lignin modification responsible for efficient lignocellulose conversion <em>in vitro</em> and an effective plant anti-oxidation response <em>in vivo</em>.<h3>Methods</h3>We initially selected specific rice mutants by performing modern CRISPR/cas9 editing with caffeic acid <em>O</em>-methyltransferase involved in the synthetic pathways of monolignols (G, S) and ferulic acid (FA), and then explored lignocellulose conversion and plant cadmium (Cd) accumulation using advanced chemical, biochemical and thermal-chemical analyses.<h3>Results</h3>Notable lignin modification was achieved from the predominately synergistic down-regulation of S-monomer synthesis in three mutants. This consequently upgraded lignocellulose porosity by up to 1.8 folds to account for significantly enhanced biomass saccharification and bioethanol production by 20 %-26 % relative to the wild-type. The modified lignin also favors the dissection of diverse lignin nanoparticles with dimensions reduced by 1.5–1.9 folds, applicable for thermal-chemical conversion into the carbon quantum dots with increased yields by 15 % and 31 %. The proportions of G-monomers and FA were significantly increased in the mutants, and the lignin extractions were further assayed with higher activities for two standard antioxidants (DPPH and ABTS) <em>in vitro</em> compared to the wild-type, revealing a distinctively enhanced plant antioxidative capacity in the mutants. Water culture showed that young mutant seedlings accumulated more Cd than wild-type did (<em>p</em> &lt; 0.01, n = 3), suggesting effective heavy metal phytoremediation in the mutants.<h3>Conclusion</h3>A hypothetical model of characteristic lignin modification for specific S-monomer reduction, accountable for improved lignocellulose recalcitrance, was proposed. It provides a powerful strategy for achieving high-yield biofuels and value-added bioproducts or enhancing plant antioxidative capacity for heavy metal phytoremediation.","PeriodicalId":14952,"journal":{"name":"Journal of Advanced Research","volume":"10 1","pages":""},"PeriodicalIF":11.4000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Research","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1016/j.jare.2025.01.048","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction

Crop straws provide substantial biomass resources that are transformable for sustainable biofuels and valuable bioproducts. However, the natural lignocellulose recalcitrance results in an expensive biomass process and secondary waste liberation. As lignin is a major recalcitrant factor, genetic engineering of lignin biosynthesis is increasingly being implemented in bioenergy crops, but much remains unclear about the desired lignocellulose alteration and resulting function.

Objectives

This study attempted to explore the mechanisms of lignin modification responsible for efficient lignocellulose conversion in vitro and an effective plant anti-oxidation response in vivo.

Methods

We initially selected specific rice mutants by performing modern CRISPR/cas9 editing with caffeic acid O-methyltransferase involved in the synthetic pathways of monolignols (G, S) and ferulic acid (FA), and then explored lignocellulose conversion and plant cadmium (Cd) accumulation using advanced chemical, biochemical and thermal-chemical analyses.

Results

Notable lignin modification was achieved from the predominately synergistic down-regulation of S-monomer synthesis in three mutants. This consequently upgraded lignocellulose porosity by up to 1.8 folds to account for significantly enhanced biomass saccharification and bioethanol production by 20 %-26 % relative to the wild-type. The modified lignin also favors the dissection of diverse lignin nanoparticles with dimensions reduced by 1.5–1.9 folds, applicable for thermal-chemical conversion into the carbon quantum dots with increased yields by 15 % and 31 %. The proportions of G-monomers and FA were significantly increased in the mutants, and the lignin extractions were further assayed with higher activities for two standard antioxidants (DPPH and ABTS) in vitro compared to the wild-type, revealing a distinctively enhanced plant antioxidative capacity in the mutants. Water culture showed that young mutant seedlings accumulated more Cd than wild-type did (p < 0.01, n = 3), suggesting effective heavy metal phytoremediation in the mutants.

Conclusion

A hypothetical model of characteristic lignin modification for specific S-monomer reduction, accountable for improved lignocellulose recalcitrance, was proposed. It provides a powerful strategy for achieving high-yield biofuels and value-added bioproducts or enhancing plant antioxidative capacity for heavy metal phytoremediation.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Advanced Research
Journal of Advanced Research Multidisciplinary-Multidisciplinary
CiteScore
21.60
自引率
0.90%
发文量
280
审稿时长
12 weeks
期刊介绍: Journal of Advanced Research (J. Adv. Res.) is an applied/natural sciences, peer-reviewed journal that focuses on interdisciplinary research. The journal aims to contribute to applied research and knowledge worldwide through the publication of original and high-quality research articles in the fields of Medicine, Pharmaceutical Sciences, Dentistry, Physical Therapy, Veterinary Medicine, and Basic and Biological Sciences. The following abstracting and indexing services cover the Journal of Advanced Research: PubMed/Medline, Essential Science Indicators, Web of Science, Scopus, PubMed Central, PubMed, Science Citation Index Expanded, Directory of Open Access Journals (DOAJ), and INSPEC.
期刊最新文献
LncRNA CRCMSL interferes in phospholipid unsaturation to suppress colorectal cancer progression via reducing membrane fluidity A functional cascading of lignin modification via repression of caffeic acid O-methyltransferase for bioproduction and anti-oxidation in rice A novel navigation assistant method for substation inspection robot based on multisensory information fusion Editorial Board Identification of a transcription factor AoMsn2 of the Hog1 signaling pathway contributes to fungal growth, development and pathogenicity in Arthrobotrys oligospora
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1