Juan-Juan Niu, Bin-Bin Shi, Zheng-Kui Tao, Hong-Hao Ma
{"title":"Indirect production of doubly charmed tetraquark Tcc at high energy colliders","authors":"Juan-Juan Niu, Bin-Bin Shi, Zheng-Kui Tao, Hong-Hao Ma","doi":"10.1103/physrevd.111.014019","DOIUrl":null,"url":null,"abstract":"The indirect production mechanisms of doubly charmed tetraquark T</a:mi>c</a:mi>c</a:mi></a:mrow></a:msub></a:math> through three decay channels, <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:mrow><c:mi>Higgs</c:mi><c:mo stretchy=\"false\">/</c:mo><c:msup><c:mrow><c:mi>Z</c:mi></c:mrow><c:mrow><c:mn>0</c:mn></c:mrow></c:msup><c:mo stretchy=\"false\">→</c:mo><c:mo stretchy=\"false\">⟨</c:mo><c:mi>c</c:mi><c:mi>c</c:mi><c:msub><c:mrow><c:mo stretchy=\"false\">⟩</c:mo></c:mrow><c:mrow><c:mover accent=\"true\"><c:mrow><c:mn>3</c:mn></c:mrow><c:mrow><c:mo stretchy=\"false\">¯</c:mo></c:mrow></c:mover></c:mrow></c:msub><c:mo>+</c:mo><c:mover accent=\"true\"><c:mrow><c:mi>c</c:mi></c:mrow><c:mrow><c:mo stretchy=\"false\">¯</c:mo></c:mrow></c:mover><c:mo>+</c:mo><c:mover accent=\"true\"><c:mrow><c:mi>c</c:mi></c:mrow><c:mrow><c:mo stretchy=\"false\">¯</c:mo></c:mrow></c:mover><c:mo stretchy=\"false\">→</c:mo><c:msubsup><c:mrow><c:mi>T</c:mi></c:mrow><c:mrow><c:mi>c</c:mi><c:mi>c</c:mi></c:mrow><c:mrow><c:mover accent=\"true\"><c:mrow><c:mi>q</c:mi></c:mrow><c:mrow><c:mo stretchy=\"false\">¯</c:mo></c:mrow></c:mover><c:mover accent=\"true\"><c:mrow><c:msup><c:mrow><c:mi>q</c:mi></c:mrow><c:mrow><c:mo>′</c:mo></c:mrow></c:msup></c:mrow><c:mrow><c:mo stretchy=\"true\">¯</c:mo></c:mrow></c:mover></c:mrow></c:msubsup><c:mo>+</c:mo><c:mover accent=\"true\"><c:mrow><c:mi>c</c:mi></c:mrow><c:mrow><c:mo stretchy=\"false\">¯</c:mo></c:mrow></c:mover><c:mo>+</c:mo><c:mover accent=\"true\"><c:mrow><c:mi>c</c:mi></c:mrow><c:mrow><c:mo stretchy=\"false\">¯</c:mo></c:mrow></c:mover></c:mrow></c:math> and <x:math xmlns:x=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><x:msup><x:mi>W</x:mi><x:mo>+</x:mo></x:msup><x:mo stretchy=\"false\">→</x:mo><x:mo stretchy=\"false\">⟨</x:mo><x:mi>c</x:mi><x:mi>c</x:mi><x:msub><x:mo stretchy=\"false\">⟩</x:mo><x:mover accent=\"true\"><x:mn>3</x:mn><x:mo stretchy=\"false\">¯</x:mo></x:mover></x:msub><x:mo>+</x:mo><x:mover accent=\"true\"><x:mi>c</x:mi><x:mo stretchy=\"false\">¯</x:mo></x:mover><x:mo>+</x:mo><x:mover accent=\"true\"><x:mi>s</x:mi><x:mo stretchy=\"false\">¯</x:mo></x:mover><x:mo stretchy=\"false\">→</x:mo><x:msubsup><x:mi>T</x:mi><x:mrow><x:mi>c</x:mi><x:mi>c</x:mi></x:mrow><x:mrow><x:mover accent=\"true\"><x:mi>q</x:mi><x:mo stretchy=\"false\">¯</x:mo></x:mover><x:mover accent=\"true\"><x:msup><x:mi>q</x:mi><x:mo>′</x:mo></x:msup><x:mo stretchy=\"true\">¯</x:mo></x:mover></x:mrow></x:msubsup><x:mo>+</x:mo><x:mover accent=\"true\"><x:mi>c</x:mi><x:mo stretchy=\"false\">¯</x:mo></x:mover><x:mo>+</x:mo><x:mover accent=\"true\"><x:mi>s</x:mi><x:mo stretchy=\"false\">¯</x:mo></x:mover></x:math>, are analyzed within the framework of nonrelativistic QCD. The intermediate <rb:math xmlns:rb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><rb:mo stretchy=\"false\">⟨</rb:mo><rb:mi>c</rb:mi><rb:mi>c</rb:mi><rb:msub><rb:mo stretchy=\"false\">⟩</rb:mo><rb:mover accent=\"true\"><rb:mn>3</rb:mn><rb:mo stretchy=\"false\">¯</rb:mo></rb:mover></rb:msub></rb:math> diquark cluster in color antitriplet evolves into tetraquark components via the fragmentation process by trapping two light antiquarks (<xb:math xmlns:xb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><xb:mover accent=\"true\"><xb:mi>q</xb:mi><xb:mo stretchy=\"false\">¯</xb:mo></xb:mover></xb:math> and <bc:math xmlns:bc=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><bc:mover accent=\"true\"><bc:msup><bc:mi>q</bc:mi><bc:mo>′</bc:mo></bc:msup><bc:mo stretchy=\"true\">¯</bc:mo></bc:mover></bc:math>) from the vacuum. After the considered doubly charmed tetraquark components are summed, including <fc:math xmlns:fc=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><fc:msubsup><fc:mi>T</fc:mi><fc:mrow><fc:mi>c</fc:mi><fc:mi>c</fc:mi></fc:mrow><fc:mrow><fc:mover accent=\"true\"><fc:mi>u</fc:mi><fc:mo stretchy=\"false\">¯</fc:mo></fc:mover><fc:mover accent=\"true\"><fc:mi>u</fc:mi><fc:mo stretchy=\"false\">¯</fc:mo></fc:mover></fc:mrow></fc:msubsup></fc:math>, <lc:math xmlns:lc=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><lc:msubsup><lc:mi>T</lc:mi><lc:mrow><lc:mi>c</lc:mi><lc:mi>c</lc:mi></lc:mrow><lc:mrow><lc:mover accent=\"true\"><lc:mi>u</lc:mi><lc:mo stretchy=\"false\">¯</lc:mo></lc:mover><lc:mover accent=\"true\"><lc:mi>d</lc:mi><lc:mo stretchy=\"false\">¯</lc:mo></lc:mover></lc:mrow></lc:msubsup></lc:math>, <rc:math xmlns:rc=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><rc:msubsup><rc:mi>T</rc:mi><rc:mrow><rc:mi>c</rc:mi><rc:mi>c</rc:mi></rc:mrow><rc:mrow><rc:mover accent=\"true\"><rc:mi>d</rc:mi><rc:mo stretchy=\"false\">¯</rc:mo></rc:mover><rc:mover accent=\"true\"><rc:mi>d</rc:mi><rc:mo stretchy=\"false\">¯</rc:mo></rc:mover></rc:mrow></rc:msubsup></rc:math>, <xc:math xmlns:xc=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><xc:msubsup><xc:mi>T</xc:mi><xc:mrow><xc:mi>c</xc:mi><xc:mi>c</xc:mi></xc:mrow><xc:mrow><xc:mover accent=\"true\"><xc:mi>u</xc:mi><xc:mo stretchy=\"false\">¯</xc:mo></xc:mover><xc:mover accent=\"true\"><xc:mi>s</xc:mi><xc:mo stretchy=\"false\">¯</xc:mo></xc:mover></xc:mrow></xc:msubsup></xc:math>, and <dd:math xmlns:dd=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><dd:msubsup><dd:mi>T</dd:mi><dd:mrow><dd:mi>c</dd:mi><dd:mi>c</dd:mi></dd:mrow><dd:mrow><dd:mover accent=\"true\"><dd:mi>d</dd:mi><dd:mo stretchy=\"false\">¯</dd:mo></dd:mover><dd:mover accent=\"true\"><dd:mi>s</dd:mi><dd:mo stretchy=\"false\">¯</dd:mo></dd:mover></dd:mrow></dd:msubsup></dd:math>, the decay widths, branching ratios, and produced events each year for the production of <jd:math xmlns:jd=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><jd:msub><jd:mi>T</jd:mi><jd:mrow><jd:mi>c</jd:mi><jd:mi>c</jd:mi></jd:mrow></jd:msub></jd:math> can be predicted at LHC and Circular Electron-Positron Collider (CEPC), respectively. The differential distributions and two main sources of theoretical uncertainty are also discussed. The results show that the produced events each year for <ld:math xmlns:ld=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><ld:msub><ld:mi>T</ld:mi><ld:mrow><ld:mi>c</ld:mi><ld:mi>c</ld:mi></ld:mrow></ld:msub></ld:math> via <nd:math xmlns:nd=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><nd:msup><nd:mi>W</nd:mi><nd:mo>+</nd:mo></nd:msup></nd:math> decays is <pd:math xmlns:pd=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><pd:mn>1.80</pd:mn><pd:mo>×</pd:mo><pd:msup><pd:mn>10</pd:mn><pd:mn>5</pd:mn></pd:msup></pd:math>, nearly 2 orders of magnitude larger than that by Higgs decays (<rd:math xmlns:rd=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><rd:mn>1.11</rd:mn><rd:mo>×</rd:mo><rd:msup><rd:mn>10</rd:mn><rd:mn>3</rd:mn></rd:msup></rd:math>) and <td:math xmlns:td=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><td:msup><td:mi>Z</td:mi><td:mn>0</td:mn></td:msup></td:math> decays (<vd:math xmlns:vd=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><vd:mn>4.81</vd:mn><vd:mo>×</vd:mo><vd:msup><vd:mn>10</vd:mn><vd:mn>3</vd:mn></vd:msup></vd:math>) at LHC. However at CEPC, the largest contribution for the production of <xd:math xmlns:xd=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><xd:msub><xd:mi>T</xd:mi><xd:mrow><xd:mi>c</xd:mi><xd:mi>c</xd:mi></xd:mrow></xd:msub></xd:math> is through <zd:math xmlns:zd=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><zd:msup><zd:mi>Z</zd:mi><zd:mn>0</zd:mn></zd:msup></zd:math> decays, about <be:math xmlns:be=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><be:mn>1.63</be:mn><be:mo>×</be:mo><be:msup><be:mn>10</be:mn><be:mn>6</be:mn></be:msup></be:math>. There are only <de:math xmlns:de=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><de:mn>4.79</de:mn><de:mo>×</de:mo><de:msup><de:mn>10</de:mn><de:mrow><de:mo>−</de:mo><de:mn>1</de:mn></de:mrow></de:msup></de:math> and <fe:math xmlns:fe=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><fe:mn>2.03</fe:mn><fe:mo>×</fe:mo><fe:msup><fe:mn>10</fe:mn><fe:mn>2</fe:mn></fe:msup></fe:math> <he:math xmlns:he=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><he:msub><he:mi>T</he:mi><he:mrow><he:mi>c</he:mi><he:mi>c</he:mi></he:mrow></he:msub></he:math> events produced each year at CEPC through Higgs and <je:math xmlns:je=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><je:msup><je:mi>W</je:mi><je:mo>+</je:mo></je:msup></je:math> decay, respectively. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"25 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.111.014019","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
The indirect production mechanisms of doubly charmed tetraquark Tcc through three decay channels, Higgs/Z0→⟨cc⟩3¯+c¯+c¯→Tccq¯q′¯+c¯+c¯ and W+→⟨cc⟩3¯+c¯+s¯→Tccq¯q′¯+c¯+s¯, are analyzed within the framework of nonrelativistic QCD. The intermediate ⟨cc⟩3¯ diquark cluster in color antitriplet evolves into tetraquark components via the fragmentation process by trapping two light antiquarks (q¯ and q′¯) from the vacuum. After the considered doubly charmed tetraquark components are summed, including Tccu¯u¯, Tccu¯d¯, Tccd¯d¯, Tccu¯s¯, and Tccd¯s¯, the decay widths, branching ratios, and produced events each year for the production of Tcc can be predicted at LHC and Circular Electron-Positron Collider (CEPC), respectively. The differential distributions and two main sources of theoretical uncertainty are also discussed. The results show that the produced events each year for Tcc via W+ decays is 1.80×105, nearly 2 orders of magnitude larger than that by Higgs decays (1.11×103) and Z0 decays (4.81×103) at LHC. However at CEPC, the largest contribution for the production of Tcc is through Z0 decays, about 1.63×106. There are only 4.79×10−1 and 2.03×102Tcc events produced each year at CEPC through Higgs and W+ decay, respectively. Published by the American Physical Society2025
期刊介绍:
Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics.
PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including:
Particle physics experiments,
Electroweak interactions,
Strong interactions,
Lattice field theories, lattice QCD,
Beyond the standard model physics,
Phenomenological aspects of field theory, general methods,
Gravity, cosmology, cosmic rays,
Astrophysics and astroparticle physics,
General relativity,
Formal aspects of field theory, field theory in curved space,
String theory, quantum gravity, gauge/gravity duality.