Indirect production of doubly charmed tetraquark Tcc at high energy colliders

IF 5 2区 物理与天体物理 Q1 Physics and Astronomy Physical Review D Pub Date : 2025-01-17 DOI:10.1103/physrevd.111.014019
Juan-Juan Niu, Bin-Bin Shi, Zheng-Kui Tao, Hong-Hao Ma
{"title":"Indirect production of doubly charmed tetraquark Tcc at high energy colliders","authors":"Juan-Juan Niu, Bin-Bin Shi, Zheng-Kui Tao, Hong-Hao Ma","doi":"10.1103/physrevd.111.014019","DOIUrl":null,"url":null,"abstract":"The indirect production mechanisms of doubly charmed tetraquark T</a:mi>c</a:mi>c</a:mi></a:mrow></a:msub></a:math> through three decay channels, <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:mrow><c:mi>Higgs</c:mi><c:mo stretchy=\"false\">/</c:mo><c:msup><c:mrow><c:mi>Z</c:mi></c:mrow><c:mrow><c:mn>0</c:mn></c:mrow></c:msup><c:mo stretchy=\"false\">→</c:mo><c:mo stretchy=\"false\">⟨</c:mo><c:mi>c</c:mi><c:mi>c</c:mi><c:msub><c:mrow><c:mo stretchy=\"false\">⟩</c:mo></c:mrow><c:mrow><c:mover accent=\"true\"><c:mrow><c:mn>3</c:mn></c:mrow><c:mrow><c:mo stretchy=\"false\">¯</c:mo></c:mrow></c:mover></c:mrow></c:msub><c:mo>+</c:mo><c:mover accent=\"true\"><c:mrow><c:mi>c</c:mi></c:mrow><c:mrow><c:mo stretchy=\"false\">¯</c:mo></c:mrow></c:mover><c:mo>+</c:mo><c:mover accent=\"true\"><c:mrow><c:mi>c</c:mi></c:mrow><c:mrow><c:mo stretchy=\"false\">¯</c:mo></c:mrow></c:mover><c:mo stretchy=\"false\">→</c:mo><c:msubsup><c:mrow><c:mi>T</c:mi></c:mrow><c:mrow><c:mi>c</c:mi><c:mi>c</c:mi></c:mrow><c:mrow><c:mover accent=\"true\"><c:mrow><c:mi>q</c:mi></c:mrow><c:mrow><c:mo stretchy=\"false\">¯</c:mo></c:mrow></c:mover><c:mover accent=\"true\"><c:mrow><c:msup><c:mrow><c:mi>q</c:mi></c:mrow><c:mrow><c:mo>′</c:mo></c:mrow></c:msup></c:mrow><c:mrow><c:mo stretchy=\"true\">¯</c:mo></c:mrow></c:mover></c:mrow></c:msubsup><c:mo>+</c:mo><c:mover accent=\"true\"><c:mrow><c:mi>c</c:mi></c:mrow><c:mrow><c:mo stretchy=\"false\">¯</c:mo></c:mrow></c:mover><c:mo>+</c:mo><c:mover accent=\"true\"><c:mrow><c:mi>c</c:mi></c:mrow><c:mrow><c:mo stretchy=\"false\">¯</c:mo></c:mrow></c:mover></c:mrow></c:math> and <x:math xmlns:x=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><x:msup><x:mi>W</x:mi><x:mo>+</x:mo></x:msup><x:mo stretchy=\"false\">→</x:mo><x:mo stretchy=\"false\">⟨</x:mo><x:mi>c</x:mi><x:mi>c</x:mi><x:msub><x:mo stretchy=\"false\">⟩</x:mo><x:mover accent=\"true\"><x:mn>3</x:mn><x:mo stretchy=\"false\">¯</x:mo></x:mover></x:msub><x:mo>+</x:mo><x:mover accent=\"true\"><x:mi>c</x:mi><x:mo stretchy=\"false\">¯</x:mo></x:mover><x:mo>+</x:mo><x:mover accent=\"true\"><x:mi>s</x:mi><x:mo stretchy=\"false\">¯</x:mo></x:mover><x:mo stretchy=\"false\">→</x:mo><x:msubsup><x:mi>T</x:mi><x:mrow><x:mi>c</x:mi><x:mi>c</x:mi></x:mrow><x:mrow><x:mover accent=\"true\"><x:mi>q</x:mi><x:mo stretchy=\"false\">¯</x:mo></x:mover><x:mover accent=\"true\"><x:msup><x:mi>q</x:mi><x:mo>′</x:mo></x:msup><x:mo stretchy=\"true\">¯</x:mo></x:mover></x:mrow></x:msubsup><x:mo>+</x:mo><x:mover accent=\"true\"><x:mi>c</x:mi><x:mo stretchy=\"false\">¯</x:mo></x:mover><x:mo>+</x:mo><x:mover accent=\"true\"><x:mi>s</x:mi><x:mo stretchy=\"false\">¯</x:mo></x:mover></x:math>, are analyzed within the framework of nonrelativistic QCD. The intermediate <rb:math xmlns:rb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><rb:mo stretchy=\"false\">⟨</rb:mo><rb:mi>c</rb:mi><rb:mi>c</rb:mi><rb:msub><rb:mo stretchy=\"false\">⟩</rb:mo><rb:mover accent=\"true\"><rb:mn>3</rb:mn><rb:mo stretchy=\"false\">¯</rb:mo></rb:mover></rb:msub></rb:math> diquark cluster in color antitriplet evolves into tetraquark components via the fragmentation process by trapping two light antiquarks (<xb:math xmlns:xb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><xb:mover accent=\"true\"><xb:mi>q</xb:mi><xb:mo stretchy=\"false\">¯</xb:mo></xb:mover></xb:math> and <bc:math xmlns:bc=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><bc:mover accent=\"true\"><bc:msup><bc:mi>q</bc:mi><bc:mo>′</bc:mo></bc:msup><bc:mo stretchy=\"true\">¯</bc:mo></bc:mover></bc:math>) from the vacuum. After the considered doubly charmed tetraquark components are summed, including <fc:math xmlns:fc=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><fc:msubsup><fc:mi>T</fc:mi><fc:mrow><fc:mi>c</fc:mi><fc:mi>c</fc:mi></fc:mrow><fc:mrow><fc:mover accent=\"true\"><fc:mi>u</fc:mi><fc:mo stretchy=\"false\">¯</fc:mo></fc:mover><fc:mover accent=\"true\"><fc:mi>u</fc:mi><fc:mo stretchy=\"false\">¯</fc:mo></fc:mover></fc:mrow></fc:msubsup></fc:math>, <lc:math xmlns:lc=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><lc:msubsup><lc:mi>T</lc:mi><lc:mrow><lc:mi>c</lc:mi><lc:mi>c</lc:mi></lc:mrow><lc:mrow><lc:mover accent=\"true\"><lc:mi>u</lc:mi><lc:mo stretchy=\"false\">¯</lc:mo></lc:mover><lc:mover accent=\"true\"><lc:mi>d</lc:mi><lc:mo stretchy=\"false\">¯</lc:mo></lc:mover></lc:mrow></lc:msubsup></lc:math>, <rc:math xmlns:rc=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><rc:msubsup><rc:mi>T</rc:mi><rc:mrow><rc:mi>c</rc:mi><rc:mi>c</rc:mi></rc:mrow><rc:mrow><rc:mover accent=\"true\"><rc:mi>d</rc:mi><rc:mo stretchy=\"false\">¯</rc:mo></rc:mover><rc:mover accent=\"true\"><rc:mi>d</rc:mi><rc:mo stretchy=\"false\">¯</rc:mo></rc:mover></rc:mrow></rc:msubsup></rc:math>, <xc:math xmlns:xc=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><xc:msubsup><xc:mi>T</xc:mi><xc:mrow><xc:mi>c</xc:mi><xc:mi>c</xc:mi></xc:mrow><xc:mrow><xc:mover accent=\"true\"><xc:mi>u</xc:mi><xc:mo stretchy=\"false\">¯</xc:mo></xc:mover><xc:mover accent=\"true\"><xc:mi>s</xc:mi><xc:mo stretchy=\"false\">¯</xc:mo></xc:mover></xc:mrow></xc:msubsup></xc:math>, and <dd:math xmlns:dd=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><dd:msubsup><dd:mi>T</dd:mi><dd:mrow><dd:mi>c</dd:mi><dd:mi>c</dd:mi></dd:mrow><dd:mrow><dd:mover accent=\"true\"><dd:mi>d</dd:mi><dd:mo stretchy=\"false\">¯</dd:mo></dd:mover><dd:mover accent=\"true\"><dd:mi>s</dd:mi><dd:mo stretchy=\"false\">¯</dd:mo></dd:mover></dd:mrow></dd:msubsup></dd:math>, the decay widths, branching ratios, and produced events each year for the production of <jd:math xmlns:jd=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><jd:msub><jd:mi>T</jd:mi><jd:mrow><jd:mi>c</jd:mi><jd:mi>c</jd:mi></jd:mrow></jd:msub></jd:math> can be predicted at LHC and Circular Electron-Positron Collider (CEPC), respectively. The differential distributions and two main sources of theoretical uncertainty are also discussed. The results show that the produced events each year for <ld:math xmlns:ld=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><ld:msub><ld:mi>T</ld:mi><ld:mrow><ld:mi>c</ld:mi><ld:mi>c</ld:mi></ld:mrow></ld:msub></ld:math> via <nd:math xmlns:nd=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><nd:msup><nd:mi>W</nd:mi><nd:mo>+</nd:mo></nd:msup></nd:math> decays is <pd:math xmlns:pd=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><pd:mn>1.80</pd:mn><pd:mo>×</pd:mo><pd:msup><pd:mn>10</pd:mn><pd:mn>5</pd:mn></pd:msup></pd:math>, nearly 2 orders of magnitude larger than that by Higgs decays (<rd:math xmlns:rd=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><rd:mn>1.11</rd:mn><rd:mo>×</rd:mo><rd:msup><rd:mn>10</rd:mn><rd:mn>3</rd:mn></rd:msup></rd:math>) and <td:math xmlns:td=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><td:msup><td:mi>Z</td:mi><td:mn>0</td:mn></td:msup></td:math> decays (<vd:math xmlns:vd=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><vd:mn>4.81</vd:mn><vd:mo>×</vd:mo><vd:msup><vd:mn>10</vd:mn><vd:mn>3</vd:mn></vd:msup></vd:math>) at LHC. However at CEPC, the largest contribution for the production of <xd:math xmlns:xd=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><xd:msub><xd:mi>T</xd:mi><xd:mrow><xd:mi>c</xd:mi><xd:mi>c</xd:mi></xd:mrow></xd:msub></xd:math> is through <zd:math xmlns:zd=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><zd:msup><zd:mi>Z</zd:mi><zd:mn>0</zd:mn></zd:msup></zd:math> decays, about <be:math xmlns:be=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><be:mn>1.63</be:mn><be:mo>×</be:mo><be:msup><be:mn>10</be:mn><be:mn>6</be:mn></be:msup></be:math>. There are only <de:math xmlns:de=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><de:mn>4.79</de:mn><de:mo>×</de:mo><de:msup><de:mn>10</de:mn><de:mrow><de:mo>−</de:mo><de:mn>1</de:mn></de:mrow></de:msup></de:math> and <fe:math xmlns:fe=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><fe:mn>2.03</fe:mn><fe:mo>×</fe:mo><fe:msup><fe:mn>10</fe:mn><fe:mn>2</fe:mn></fe:msup></fe:math> <he:math xmlns:he=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><he:msub><he:mi>T</he:mi><he:mrow><he:mi>c</he:mi><he:mi>c</he:mi></he:mrow></he:msub></he:math> events produced each year at CEPC through Higgs and <je:math xmlns:je=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><je:msup><je:mi>W</je:mi><je:mo>+</je:mo></je:msup></je:math> decay, respectively. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"25 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.111.014019","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

The indirect production mechanisms of doubly charmed tetraquark Tcc through three decay channels, Higgs/Z0cc3¯+c¯+c¯Tccq¯q¯+c¯+c¯ and W+cc3¯+c¯+s¯Tccq¯q¯+c¯+s¯, are analyzed within the framework of nonrelativistic QCD. The intermediate cc3¯ diquark cluster in color antitriplet evolves into tetraquark components via the fragmentation process by trapping two light antiquarks (q¯ and q¯) from the vacuum. After the considered doubly charmed tetraquark components are summed, including Tccu¯u¯, Tccu¯d¯, Tccd¯d¯, Tccu¯s¯, and Tccd¯s¯, the decay widths, branching ratios, and produced events each year for the production of Tcc can be predicted at LHC and Circular Electron-Positron Collider (CEPC), respectively. The differential distributions and two main sources of theoretical uncertainty are also discussed. The results show that the produced events each year for Tcc via W+ decays is 1.80×105, nearly 2 orders of magnitude larger than that by Higgs decays (1.11×103) and Z0 decays (4.81×103) at LHC. However at CEPC, the largest contribution for the production of Tcc is through Z0 decays, about 1.63×106. There are only 4.79×101 and 2.03×102 Tcc events produced each year at CEPC through Higgs and W+ decay, respectively. Published by the American Physical Society 2025
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在高能对撞机上间接产生双粲四夸克Tcc
在非相对论性QCD的框架内,分析了双粲四夸克Tcc通过Higgs/Z0→⟨cc⟩3¯+c¯+c¯→Tccq¯q′¯+c¯+c¯和W+→⟨cc⟩3¯+c¯+s¯→Tccq¯q′¯+c¯+s¯三个衰减通道的间接产生机制。彩色反三重态中的中间⟨cc⟩3¯重夸克簇通过从真空捕获两个轻反夸克(q¯和q′¯)的碎片化过程演变成四夸克分量。将考虑的双粲四夸克分量(包括Tccu¯u¯、Tccu¯d¯、Tccu¯d¯、Tccu¯s¯和Tccd¯s¯)相加后,可以分别在大型强子对撞机和环形正负电子对撞机(CEPC)上预测Tcc的衰变宽度、分支比和每年产生的事件。还讨论了微分分布和理论不确定性的两个主要来源。结果表明,每年通过W+衰变产生的Tcc事件为1.80×105,比在大型强子对撞机上通过希格斯衰变(1.11×103)和Z0衰变(4.81×103)产生的事件大近2个数量级。然而,在CEPC, Tcc的最大贡献是通过Z0衰变,大约1.63×106。每年在CEPC通过希格斯和W+衰变分别产生4.79×10−1和2.03×102 Tcc事件。2025年由美国物理学会出版
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Physical Review D
Physical Review D 物理-天文与天体物理
CiteScore
9.20
自引率
36.00%
发文量
0
审稿时长
2 months
期刊介绍: Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics. PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including: Particle physics experiments, Electroweak interactions, Strong interactions, Lattice field theories, lattice QCD, Beyond the standard model physics, Phenomenological aspects of field theory, general methods, Gravity, cosmology, cosmic rays, Astrophysics and astroparticle physics, General relativity, Formal aspects of field theory, field theory in curved space, String theory, quantum gravity, gauge/gravity duality.
期刊最新文献
Binding of the three-hadron DD*K system from the lattice effective field theory Implication of a negative effective range on the DD¯* interaction and the nature of X(3872) Appraising constrained second-order power corrections in HQET with Λb→Λclν Constraints on neutrino nonstandard interactions from COHERENT, PandaX-4T and XENONnT Holographic foliations: Self-similar quasicrystals from hyperbolic honeycombs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1