Deep learning and its applications in nuclear magnetic resonance spectroscopy

IF 7.3 2区 化学 Q2 CHEMISTRY, PHYSICAL Progress in Nuclear Magnetic Resonance Spectroscopy Pub Date : 2025-01-17 DOI:10.1016/j.pnmrs.2024.101556
Yao Luo, Xiaoxu Zheng, Mengjie Qiu, Yaoping Gou, Zhengxian Yang, Xiaobo Qu, Zhong Chen, Yanqin Lin
{"title":"Deep learning and its applications in nuclear magnetic resonance spectroscopy","authors":"Yao Luo,&nbsp;Xiaoxu Zheng,&nbsp;Mengjie Qiu,&nbsp;Yaoping Gou,&nbsp;Zhengxian Yang,&nbsp;Xiaobo Qu,&nbsp;Zhong Chen,&nbsp;Yanqin Lin","doi":"10.1016/j.pnmrs.2024.101556","DOIUrl":null,"url":null,"abstract":"<div><div>Nuclear Magnetic Resonance (NMR), as an advanced technology, has widespread applications in various fields like chemistry, biology, and medicine. However, issues such as long acquisition times for multidimensional spectra and low sensitivity limit the broader application of NMR. Traditional algorithms aim to address these issues but have limitations in speed and accuracy. Deep Learning (DL), a branch of Artificial Intelligence (AI) technology, has shown remarkable success in many fields including NMR. This paper presents an overview of the basics of DL and current applications of DL in NMR, highlights existing challenges, and suggests potential directions for improvement.</div></div>","PeriodicalId":20740,"journal":{"name":"Progress in Nuclear Magnetic Resonance Spectroscopy","volume":"146 ","pages":"Article 101556"},"PeriodicalIF":7.3000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Nuclear Magnetic Resonance Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079656524000311","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Nuclear Magnetic Resonance (NMR), as an advanced technology, has widespread applications in various fields like chemistry, biology, and medicine. However, issues such as long acquisition times for multidimensional spectra and low sensitivity limit the broader application of NMR. Traditional algorithms aim to address these issues but have limitations in speed and accuracy. Deep Learning (DL), a branch of Artificial Intelligence (AI) technology, has shown remarkable success in many fields including NMR. This paper presents an overview of the basics of DL and current applications of DL in NMR, highlights existing challenges, and suggests potential directions for improvement.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
深度学习及其在核磁共振波谱学中的应用
核磁共振作为一项先进的技术,在化学、生物、医学等各个领域有着广泛的应用。然而,多维光谱采集时间长、灵敏度低等问题限制了核磁共振的广泛应用。传统算法旨在解决这些问题,但在速度和准确性方面存在局限性。深度学习(DL)是人工智能(AI)技术的一个分支,在包括核磁共振在内的许多领域都取得了显著的成功。本文概述了深度学习的基础知识和目前深度学习在核磁共振中的应用,强调了存在的挑战,并提出了潜在的改进方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
14.30
自引率
8.20%
发文量
12
审稿时长
62 days
期刊介绍: Progress in Nuclear Magnetic Resonance Spectroscopy publishes review papers describing research related to the theory and application of NMR spectroscopy. This technique is widely applied in chemistry, physics, biochemistry and materials science, and also in many areas of biology and medicine. The journal publishes review articles covering applications in all of these and in related subjects, as well as in-depth treatments of the fundamental theory of and instrumental developments in NMR spectroscopy.
期刊最新文献
Deep learning and its applications in nuclear magnetic resonance spectroscopy Nonlinear effects in magnetic resonance localized spectroscopy and images Editorial Board Hyperpolarised benchtop NMR spectroscopy for analytical applications NMR investigations of glycan conformation, dynamics, and interactions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1