Detecting environmental trends to rethink soybean variety testing programs

IF 2 3区 农林科学 Q2 AGRONOMY Crop Science Pub Date : 2025-01-20 DOI:10.1002/csc2.21452
João Leonardo Corte Baptistella, Carl Knuckles, Mark Wieberg, Germano Costa‐Neto, William Wiebold, André Froés de Borja Reis
{"title":"Detecting environmental trends to rethink soybean variety testing programs","authors":"João Leonardo Corte Baptistella, Carl Knuckles, Mark Wieberg, Germano Costa‐Neto, William Wiebold, André Froés de Borja Reis","doi":"10.1002/csc2.21452","DOIUrl":null,"url":null,"abstract":"Variety testing programs (VTPs) use multi‐environment trials (MET) to evaluate and report the performance of commercially available and pre‐commercial soybean (<jats:italic>Glycine max</jats:italic> L. Merr.) varieties targeting a specific set of environments. Adequate modeling of the environmental variability and genotype–environment interactions (G × E) within the VTP would help farmers and seed companies decide which variety to choose or recommend. We propose an approach to characterize environments using the soybean data from the University of Missouri VTP. We modeled an environmental trend (EnvT) based on the phenotypic mean performance and the observed phenotype in each environment. The environments were classified into four different EnvT environment types, and soil and climate data were used as predictors of the EnvT through eXtreme Gradient Boosting (XGBoost) model. Temperature on late vegetative and flowering, soil‐saturated hydraulic conductivity, and silt content were key drivers of EnvT. The approach identified overrepresented environments (62%) and increased the ratio between variety and G × E variance. A simulation case study verified that the random removal of overrepresented sites from the dataset quickly degraded G × E analysis, implying that increasing the number of underrepresented sites is recommended. Our results demonstrate that environmental characterization is essential for optimizing resource allocation within VTP, thereby supporting the end goal of aiding farmers to utilize the best varieties for their production environment.","PeriodicalId":10849,"journal":{"name":"Crop Science","volume":"37 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crop Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1002/csc2.21452","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

Variety testing programs (VTPs) use multi‐environment trials (MET) to evaluate and report the performance of commercially available and pre‐commercial soybean (Glycine max L. Merr.) varieties targeting a specific set of environments. Adequate modeling of the environmental variability and genotype–environment interactions (G × E) within the VTP would help farmers and seed companies decide which variety to choose or recommend. We propose an approach to characterize environments using the soybean data from the University of Missouri VTP. We modeled an environmental trend (EnvT) based on the phenotypic mean performance and the observed phenotype in each environment. The environments were classified into four different EnvT environment types, and soil and climate data were used as predictors of the EnvT through eXtreme Gradient Boosting (XGBoost) model. Temperature on late vegetative and flowering, soil‐saturated hydraulic conductivity, and silt content were key drivers of EnvT. The approach identified overrepresented environments (62%) and increased the ratio between variety and G × E variance. A simulation case study verified that the random removal of overrepresented sites from the dataset quickly degraded G × E analysis, implying that increasing the number of underrepresented sites is recommended. Our results demonstrate that environmental characterization is essential for optimizing resource allocation within VTP, thereby supporting the end goal of aiding farmers to utilize the best varieties for their production environment.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
检测环境趋势,重新思考大豆品种测试计划
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Crop Science
Crop Science 农林科学-农艺学
CiteScore
4.50
自引率
8.70%
发文量
197
审稿时长
3 months
期刊介绍: Articles in Crop Science are of interest to researchers, policy makers, educators, and practitioners. The scope of articles in Crop Science includes crop breeding and genetics; crop physiology and metabolism; crop ecology, production, and management; seed physiology, production, and technology; turfgrass science; forage and grazing land ecology and management; genomics, molecular genetics, and biotechnology; germplasm collections and their use; and biomedical, health beneficial, and nutritionally enhanced plants. Crop Science publishes thematic collections of articles across its scope and includes topical Review and Interpretation, and Perspectives articles.
期刊最新文献
Characterization of differentiating lines of phytophthora in soybean Detecting environmental trends to rethink soybean variety testing programs Bambara groundnut [Vigna subterranea (L.) Verdc.] genetic diversity and population structure assessed through next-generation sequencing technologies: Restriction-site-associated DNA sequencing Integration of multi-omics approaches reveals candidate genes for drought stress in St. Augustinegrass (Stenotaphrum secundatum) Relating spatial turfgrass quality to actual evapotranspiration for precision golf course irrigation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1