Dongliang Ma, Fang Zhao, Likai Zhu, Xiaofei Li, Jine Wei, Xi Chen, Lijun Hou, Ye Li, Min Liu
{"title":"Deep learning reveals hotspots of global oceanic oxygen changes from 2003 to 2020","authors":"Dongliang Ma, Fang Zhao, Likai Zhu, Xiaofei Li, Jine Wei, Xi Chen, Lijun Hou, Ye Li, Min Liu","doi":"10.1016/j.jag.2025.104363","DOIUrl":null,"url":null,"abstract":"The decrease in global oceanic dissolved oxygen (DO) has exerted a profound impact on marine ecosystems and biogeochemical processes. However, our comprehension of DO distribution and its global change patterns remains hindered by sparse measurements and coarse-resolution simulations. Here we presented Oxyformer, a deep learning method that accurately learns DO-related information and estimates high-resolution global DO concentration. The results derived by Oxyformer demonstrate an accelerated decline in global oceanic DO content, estimated at approximately 1045 ± 665 Tmol decade<ce:sup loc=\"post\">−1</ce:sup> from 2003 to 2020. The observed trends exhibit considerable variability across different regions and depths, with some new hotspots of recent DO change including the Equatorial Indian Ocean, the South Pacific Ocean, the North Atlantic Ocean, and the Western Coast of California. The unprecedented modeling approach provides a powerful tool to track changes in global DO contents and to facilitate the understanding of their influences on ocean ecosystems and biogeochemical processes.","PeriodicalId":50341,"journal":{"name":"International Journal of Applied Earth Observation and Geoinformation","volume":"57 1","pages":""},"PeriodicalIF":7.5000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Earth Observation and Geoinformation","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1016/j.jag.2025.104363","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
The decrease in global oceanic dissolved oxygen (DO) has exerted a profound impact on marine ecosystems and biogeochemical processes. However, our comprehension of DO distribution and its global change patterns remains hindered by sparse measurements and coarse-resolution simulations. Here we presented Oxyformer, a deep learning method that accurately learns DO-related information and estimates high-resolution global DO concentration. The results derived by Oxyformer demonstrate an accelerated decline in global oceanic DO content, estimated at approximately 1045 ± 665 Tmol decade−1 from 2003 to 2020. The observed trends exhibit considerable variability across different regions and depths, with some new hotspots of recent DO change including the Equatorial Indian Ocean, the South Pacific Ocean, the North Atlantic Ocean, and the Western Coast of California. The unprecedented modeling approach provides a powerful tool to track changes in global DO contents and to facilitate the understanding of their influences on ocean ecosystems and biogeochemical processes.
期刊介绍:
The International Journal of Applied Earth Observation and Geoinformation publishes original papers that utilize earth observation data for natural resource and environmental inventory and management. These data primarily originate from remote sensing platforms, including satellites and aircraft, supplemented by surface and subsurface measurements. Addressing natural resources such as forests, agricultural land, soils, and water, as well as environmental concerns like biodiversity, land degradation, and hazards, the journal explores conceptual and data-driven approaches. It covers geoinformation themes like capturing, databasing, visualization, interpretation, data quality, and spatial uncertainty.