首页 > 最新文献

International Journal of Applied Earth Observation and Geoinformation最新文献

英文 中文
Automatic seismic source modeling of InSAR displacements InSAR位移的自动震源建模
IF 7.5 1区 地球科学 Q1 Earth and Planetary Sciences Pub Date : 2023-09-01 DOI: 10.1016/j.jag.2023.103445
S. Atzori, Fernando Monterroso, A. Antonioli, C. Luca, N. Svigkas, F. Casu, M. Manunta, M. Quintiliani, R. Lanari
{"title":"Automatic seismic source modeling of InSAR displacements","authors":"S. Atzori, Fernando Monterroso, A. Antonioli, C. Luca, N. Svigkas, F. Casu, M. Manunta, M. Quintiliani, R. Lanari","doi":"10.1016/j.jag.2023.103445","DOIUrl":"https://doi.org/10.1016/j.jag.2023.103445","url":null,"abstract":"","PeriodicalId":50341,"journal":{"name":"International Journal of Applied Earth Observation and Geoinformation","volume":"123 1","pages":"103445"},"PeriodicalIF":7.5,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"54752467","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spatially explicit accuracy assessment of deep learning-based, fine-resolution built-up land data in the United States. 基于深度学习的美国精细分辨率建筑用地数据的空间显式精度评估。
IF 7.5 1区 地球科学 Q1 Earth and Planetary Sciences Pub Date : 2023-09-01 Epub Date: 2023-08-28 DOI: 10.1016/j.jag.2023.103469
Johannes H Uhl, Stefan Leyk

Geospatial datasets derived from remote sensing data by means of machine learning methods are often based on probabilistic outputs of abstract nature, which are difficult to translate into interpretable measures. For example, the Global Human Settlement Layer GHS-BUILT-S2 product reports the probability of the presence of built-up areas in 2018 in a global 10 m × 10 m grid. However, practitioners typically require interpretable measures such as binary surfaces indicating the presence or absence of built-up areas or estimates of sub-pixel built-up surface fractions. Herein, we assess the relationship between the built-up probability in GHS-BUILT-S2 and reference built-up surface fractions derived from a highly reliable reference database for several regions in the United States. Furthermore, we identify a binarization threshold using an agreement maximization method that creates binary built-up land data from these built-up probabilities. These binary surfaces are input to a spatially explicit, scale-sensitive accuracy assessment which includes the use of a novel, visual-analytical tool which we call focal precision-recall signature plots. Our analysis reveals that a threshold of 0.5 applied to GHS-BUILT-S2 maximizes the agreement with binarized built-up land data derived from the reference built-up area fraction. We find high levels of accuracy (i.e., county-level F-1 scores of almost 0.8 on average) in the derived built-up areas, and consistently high accuracy along the rural-urban gradient in our study area. These results reveal considerable accuracy improvements in human settlement models based on Sentinel-2 data and deep learning, as compared to earlier, Landsat-based versions of the Global Human Settlement Layer.

利用机器学习方法从遥感数据中获得的地理空间数据集往往基于抽象性质的概率输出,难以转化为可解释的度量。例如,全球人类住区层GHS-BUILT-S2产品报告了2018年全球10米× 10米网格中建成区存在的概率。然而,从业者通常需要可解释的测量,如二元表面,表明建成区的存在或不存在,或亚像素建成区表面分数的估计。在此,我们评估了GHS-BUILT-S2中堆积概率与参考堆积地表分数之间的关系,这些参考地表分数来自于美国几个地区的一个高度可靠的参考数据库。此外,我们使用协议最大化方法确定二值化阈值,该方法从这些累积概率中创建二元累积土地数据。这些二元曲面被输入到一个空间显式的、尺度敏感的精度评估中,其中包括使用一种新颖的视觉分析工具,我们称之为焦点精度召回签名图。我们的分析表明,GHS-BUILT-S2的阈值为0.5,与参考建成区分数得到的二值化建成区数据的一致性最大。我们发现,在衍生的建成区中,准确率很高(即,县级F-1得分平均接近0.8),并且在我们的研究区域中,沿着城乡梯度,准确率始终很高。这些结果表明,与早期基于landsat的全球人类住区层版本相比,基于Sentinel-2数据和深度学习的人类住区模型的准确性有很大提高。
{"title":"Spatially explicit accuracy assessment of deep learning-based, fine-resolution built-up land data in the United States.","authors":"Johannes H Uhl, Stefan Leyk","doi":"10.1016/j.jag.2023.103469","DOIUrl":"10.1016/j.jag.2023.103469","url":null,"abstract":"<p><p>Geospatial datasets derived from remote sensing data by means of machine learning methods are often based on probabilistic outputs of abstract nature, which are difficult to translate into interpretable measures. For example, the Global Human Settlement Layer GHS-BUILT-S2 product reports the probability of the presence of built-up areas in 2018 in a global 10 m × 10 m grid. However, practitioners typically require interpretable measures such as binary surfaces indicating the presence or absence of built-up areas or estimates of sub-pixel built-up surface fractions. Herein, we assess the relationship between the built-up probability in GHS-BUILT-S2 and reference built-up surface fractions derived from a highly reliable reference database for several regions in the United States. Furthermore, we identify a binarization threshold using an agreement maximization method that creates binary built-up land data from these built-up probabilities. These binary surfaces are input to a spatially explicit, scale-sensitive accuracy assessment which includes the use of a novel, visual-analytical tool which we call focal precision-recall signature plots. Our analysis reveals that a threshold of 0.5 applied to GHS-BUILT-S2 maximizes the agreement with binarized built-up land data derived from the reference built-up area fraction. We find high levels of accuracy (i.e., county-level F-1 scores of almost 0.8 on average) in the derived built-up areas, and consistently high accuracy along the rural-urban gradient in our study area. These results reveal considerable accuracy improvements in human settlement models based on Sentinel-2 data and deep learning, as compared to earlier, Landsat-based versions of the Global Human Settlement Layer.</p>","PeriodicalId":50341,"journal":{"name":"International Journal of Applied Earth Observation and Geoinformation","volume":"123 1","pages":""},"PeriodicalIF":7.5,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10653213/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"54752685","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Optimal spectral index and threshold applied to Sentinel-2 data for extracting impervious surface: Verification across latitudes, growing seasons, approaches, and comparison to global datasets 应用于Sentinel-2数据提取不透水地表的最佳光谱指数和阈值:跨纬度、生长季节、方法的验证,以及与全球数据集的比较
IF 7.5 1区 地球科学 Q1 Earth and Planetary Sciences Pub Date : 2023-09-01 DOI: 10.1016/j.jag.2023.103470
Y. Dvornikov, V. Grigorieva, M. Varentsov, V. Vasenev
{"title":"Optimal spectral index and threshold applied to Sentinel-2 data for extracting impervious surface: Verification across latitudes, growing seasons, approaches, and comparison to global datasets","authors":"Y. Dvornikov, V. Grigorieva, M. Varentsov, V. Vasenev","doi":"10.1016/j.jag.2023.103470","DOIUrl":"https://doi.org/10.1016/j.jag.2023.103470","url":null,"abstract":"","PeriodicalId":50341,"journal":{"name":"International Journal of Applied Earth Observation and Geoinformation","volume":"123 1","pages":"103470"},"PeriodicalIF":7.5,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"54752739","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The application of unmanned aerial vehicle (UAV) surveys and GIS to the analysis and monitoring of recreational trail conditions 无人机(UAV)测量和GIS在游憩步道条件分析与监测中的应用
IF 7.5 1区 地球科学 Q1 Earth and Planetary Sciences Pub Date : 2023-09-01 DOI: 10.1016/j.jag.2023.103474
A. Tomczyk, M. Ewertowski, Noah Creany, F. Ancin‐Murguzur, Christopher Monz
{"title":"The application of unmanned aerial vehicle (UAV) surveys and GIS to the analysis and monitoring of recreational trail conditions","authors":"A. Tomczyk, M. Ewertowski, Noah Creany, F. Ancin‐Murguzur, Christopher Monz","doi":"10.1016/j.jag.2023.103474","DOIUrl":"https://doi.org/10.1016/j.jag.2023.103474","url":null,"abstract":"","PeriodicalId":50341,"journal":{"name":"International Journal of Applied Earth Observation and Geoinformation","volume":"123 1","pages":"103474"},"PeriodicalIF":7.5,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"54752910","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
A polarization-spectrum fusion framework based on multiscale transform and generative adversarial network for improving water and different vegetation distinguishability 基于多尺度变换和生成对抗网络的偏振光谱融合框架提高水体和不同植被的可分辨性
IF 7.5 1区 地球科学 Q1 Earth and Planetary Sciences Pub Date : 2023-09-01 DOI: 10.1016/j.jag.2023.103468
Qihao Chen, Mengqing Pang, Xiuguo Liu, Zeyu Zhang
{"title":"A polarization-spectrum fusion framework based on multiscale transform and generative adversarial network for improving water and different vegetation distinguishability","authors":"Qihao Chen, Mengqing Pang, Xiuguo Liu, Zeyu Zhang","doi":"10.1016/j.jag.2023.103468","DOIUrl":"https://doi.org/10.1016/j.jag.2023.103468","url":null,"abstract":"","PeriodicalId":50341,"journal":{"name":"International Journal of Applied Earth Observation and Geoinformation","volume":"20 1","pages":"103468"},"PeriodicalIF":7.5,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"54752653","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
HCPNet: Learning discriminative prototypes for few-shot remote sensing image scene classification HCPNet:基于少拍遥感影像场景分类的判别原型学习
IF 7.5 1区 地球科学 Q1 Earth and Planetary Sciences Pub Date : 2023-09-01 DOI: 10.1016/j.jag.2023.103447
Junjie Zhu, Ke Yang, Naiyang Guan, Xiaodong Yi, C. Qiu
{"title":"HCPNet: Learning discriminative prototypes for few-shot remote sensing image scene classification","authors":"Junjie Zhu, Ke Yang, Naiyang Guan, Xiaodong Yi, C. Qiu","doi":"10.1016/j.jag.2023.103447","DOIUrl":"https://doi.org/10.1016/j.jag.2023.103447","url":null,"abstract":"","PeriodicalId":50341,"journal":{"name":"International Journal of Applied Earth Observation and Geoinformation","volume":"123 1","pages":"103447"},"PeriodicalIF":7.5,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"54752584","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
3D building similarity for a random single-view-image pair based on a local 3D shape 基于局部三维形状的随机单视图图像对的三维建筑相似度
IF 7.5 1区 地球科学 Q1 Earth and Planetary Sciences Pub Date : 2023-09-01 DOI: 10.1016/j.jag.2023.103467
Shen Ying, Xinyue Zhang, Meng Wang, Han Guo
{"title":"3D building similarity for a random single-view-image pair based on a local 3D shape","authors":"Shen Ying, Xinyue Zhang, Meng Wang, Han Guo","doi":"10.1016/j.jag.2023.103467","DOIUrl":"https://doi.org/10.1016/j.jag.2023.103467","url":null,"abstract":"","PeriodicalId":50341,"journal":{"name":"International Journal of Applied Earth Observation and Geoinformation","volume":"47 1","pages":"103467"},"PeriodicalIF":7.5,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"54752596","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the ability of dual-polarimetric SAR measurements to observe lava flows under different volcanic environments 双极化SAR观测不同火山环境下熔岩流的能力研究
IF 7.5 1区 地球科学 Q1 Earth and Planetary Sciences Pub Date : 2023-09-01 DOI: 10.1016/j.jag.2023.103471
E. Ferrentino, C. Bignami, F. Nunziata, S. Stramondo, M. Migliaccio
{"title":"On the ability of dual-polarimetric SAR measurements to observe lava flows under different volcanic environments","authors":"E. Ferrentino, C. Bignami, F. Nunziata, S. Stramondo, M. Migliaccio","doi":"10.1016/j.jag.2023.103471","DOIUrl":"https://doi.org/10.1016/j.jag.2023.103471","url":null,"abstract":"","PeriodicalId":50341,"journal":{"name":"International Journal of Applied Earth Observation and Geoinformation","volume":"123 1","pages":"103471"},"PeriodicalIF":7.5,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"54752811","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Object-Detection from Multi-View remote sensing Images: A case study of fruit and flower detection and counting on a central Florida strawberry farm 多视点遥感图像中的目标检测:以佛罗里达州中部草莓农场的水果和花卉检测和计数为例研究
IF 7.5 1区 地球科学 Q1 Earth and Planetary Sciences Pub Date : 2023-09-01 DOI: 10.1016/j.jag.2023.103457
Caiwang Zheng, Tao Liu, A. Abd-Elrahman, V. Whitaker, B. Wilkinson
{"title":"Object-Detection from Multi-View remote sensing Images: A case study of fruit and flower detection and counting on a central Florida strawberry farm","authors":"Caiwang Zheng, Tao Liu, A. Abd-Elrahman, V. Whitaker, B. Wilkinson","doi":"10.1016/j.jag.2023.103457","DOIUrl":"https://doi.org/10.1016/j.jag.2023.103457","url":null,"abstract":"","PeriodicalId":50341,"journal":{"name":"International Journal of Applied Earth Observation and Geoinformation","volume":"123 1","pages":"103457"},"PeriodicalIF":7.5,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"54753035","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inferring socioeconomic environment from built environment characteristics based street view images: An approach of Seq2Seq method 基于街景图像的建筑环境特征推断社会经济环境:一种Seq2Seq方法
IF 7.5 1区 地球科学 Q1 Earth and Planetary Sciences Pub Date : 2023-09-01 DOI: 10.1016/j.jag.2023.103458
Yan Zhang, Fan Zhang, Libo Fang, Nengcheng Chen
{"title":"Inferring socioeconomic environment from built environment characteristics based street view images: An approach of Seq2Seq method","authors":"Yan Zhang, Fan Zhang, Libo Fang, Nengcheng Chen","doi":"10.1016/j.jag.2023.103458","DOIUrl":"https://doi.org/10.1016/j.jag.2023.103458","url":null,"abstract":"","PeriodicalId":50341,"journal":{"name":"International Journal of Applied Earth Observation and Geoinformation","volume":"123 1","pages":"103458"},"PeriodicalIF":7.5,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"54753070","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
International Journal of Applied Earth Observation and Geoinformation
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1