Yong Wang , Zhiguo Liu , Yang Li , Kelin Wang , Chunhui Yuan , Jian Shi , Jiazhong Ren , Shijie Wang , Jinping Wang , Miaoqing Zhao , Man Hu
{"title":"Peptide-based PET/CT imaging visualizes PD-L1-driven radioresistance in glioblastoma","authors":"Yong Wang , Zhiguo Liu , Yang Li , Kelin Wang , Chunhui Yuan , Jian Shi , Jiazhong Ren , Shijie Wang , Jinping Wang , Miaoqing Zhao , Man Hu","doi":"10.1016/j.drup.2025.101202","DOIUrl":null,"url":null,"abstract":"<div><div>Radioresistance remains a great challenge for radiotherapy in the treatment of glioblastoma (GBM). PD-L1 expression is a key contributor to radioresistance and immune escape in GBM. The lack of effective methods to monitor the change of PD-L1 during radiotherapy in patients limits timely intervention and management of the resistance. Here, we developed a novel peptide tracer [<sup>18</sup>F]AlF-NOTA-PCP2 for PET/CT to visualize the changes of PD-L1 expression in response to radiotherapy, revealing PD-L1-driven radioresistance in GBM. The [<sup>18</sup>F]AlF-NOTA-PCP2 demonstrated high specificity and binding affinity to PD-L1 <em>in vitro.</em> The uptake of [<sup>18</sup>F]AlF-NOTA-PCP2 on PET/CT showed a strong positive correlation with PD-L1 expression by immunohistochemistry (IHC) (<em>R</em>² = 0.861, <em>P</em> < 0.001) in GBM xenograft tumors. The radiotracer uptake in PD-L1-positive tumors significantly increased post-radiotherapy (21.25 ± 0.91 % vs. 25.12 ± 0.82 %, <em>P</em> = 0.008), aligning with the radioresistance observed in these tumors. <em>In vitro</em> studies revealed that PD-L1-driven radioresistance by enhancing DNA damage repair through upregulation of RAD51 after activation of the PI3K-Akt pathway in cells. Preliminary clinical application in a radiotherapy-treated GBM patient demonstrated the ability to monitor PD-L1 dynamics, supporting its potential for clinical translation. Collectively, this peptide-based small molecule PET/CT radiotracers offer a noninvasive, real-time, and quantitative method to dynamically visualize PD-L1-driven radioresistance in GBM. It could serve as a potential radiotracer for facilitating patient stratification, adjusting radiotherapy regimens, and guiding personalized immunotherapy strategies.</div></div>","PeriodicalId":51022,"journal":{"name":"Drug Resistance Updates","volume":"79 ","pages":"Article 101202"},"PeriodicalIF":15.8000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Resistance Updates","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1368764625000020","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Radioresistance remains a great challenge for radiotherapy in the treatment of glioblastoma (GBM). PD-L1 expression is a key contributor to radioresistance and immune escape in GBM. The lack of effective methods to monitor the change of PD-L1 during radiotherapy in patients limits timely intervention and management of the resistance. Here, we developed a novel peptide tracer [18F]AlF-NOTA-PCP2 for PET/CT to visualize the changes of PD-L1 expression in response to radiotherapy, revealing PD-L1-driven radioresistance in GBM. The [18F]AlF-NOTA-PCP2 demonstrated high specificity and binding affinity to PD-L1 in vitro. The uptake of [18F]AlF-NOTA-PCP2 on PET/CT showed a strong positive correlation with PD-L1 expression by immunohistochemistry (IHC) (R² = 0.861, P < 0.001) in GBM xenograft tumors. The radiotracer uptake in PD-L1-positive tumors significantly increased post-radiotherapy (21.25 ± 0.91 % vs. 25.12 ± 0.82 %, P = 0.008), aligning with the radioresistance observed in these tumors. In vitro studies revealed that PD-L1-driven radioresistance by enhancing DNA damage repair through upregulation of RAD51 after activation of the PI3K-Akt pathway in cells. Preliminary clinical application in a radiotherapy-treated GBM patient demonstrated the ability to monitor PD-L1 dynamics, supporting its potential for clinical translation. Collectively, this peptide-based small molecule PET/CT radiotracers offer a noninvasive, real-time, and quantitative method to dynamically visualize PD-L1-driven radioresistance in GBM. It could serve as a potential radiotracer for facilitating patient stratification, adjusting radiotherapy regimens, and guiding personalized immunotherapy strategies.
期刊介绍:
Drug Resistance Updates serves as a platform for publishing original research, commentary, and expert reviews on significant advancements in drug resistance related to infectious diseases and cancer. It encompasses diverse disciplines such as molecular biology, biochemistry, cell biology, pharmacology, microbiology, preclinical therapeutics, oncology, and clinical medicine. The journal addresses both basic research and clinical aspects of drug resistance, providing insights into novel drugs and strategies to overcome resistance. Original research articles are welcomed, and review articles are authored by leaders in the field by invitation.
Articles are written by leaders in the field, in response to an invitation from the Editors, and are peer-reviewed prior to publication. Articles are clear, readable, and up-to-date, suitable for a multidisciplinary readership and include schematic diagrams and other illustrations conveying the major points of the article. The goal is to highlight recent areas of growth and put them in perspective.
*Expert reviews in clinical and basic drug resistance research in oncology and infectious disease
*Describes emerging technologies and therapies, particularly those that overcome drug resistance
*Emphasises common themes in microbial and cancer research