Z.L. Li, J. Wang, S.L. Yi, X.G. Song, J.H. Fu, Y. Shi, J.C. Feng
{"title":"Direct bonding of AZ31B and ZrO2 induced by interfacial sono-oxidation reaction at a low temperature","authors":"Z.L. Li, J. Wang, S.L. Yi, X.G. Song, J.H. Fu, Y. Shi, J.C. Feng","doi":"10.1016/j.jma.2024.12.013","DOIUrl":null,"url":null,"abstract":"Recently, the presentation of the metal-ceramic composite structure design provides an alternative idea for the improvement of components service performance, while conventional methods for joining metals and ceramics have to involve a high heat input. However, due to the low melting point of magnesium alloys, the magnesium alloys-ceramics joining system necessitates a low joining temperature. Ultrasonic vibrations can induce numerous defects in the solid matrix, which can effectively promote atomic diffusion and metallurgical bonding between solid-phase interfaces at low temperatures. Thus, ultrasonic-assisted bonding is a highly promising method for achieving rapid and reliable joining between metals and ceramics without the use of interlayers. In this study, the direct bonding of AZ31B alloy with ZrO<sub>2</sub> ceramic was successfully achieved at 200 °C. A polycrystal spinel MgAl<sub>2</sub>O<sub>4</sub> with an average thickness of 55 nm was identified at the AZ31B/ZrO<sub>2</sub> interface. The average shear strength of joints reached 30.47 MPa. Furthermore, the dynamic recrystallization of AZ31B and the oxygen-depletion behavior of ZrO<sub>2</sub> during the bonding process were characterized to illustrate the contribution of ultrasonic vibration to joint bonding. Consequently, the solid interfacial sono-oxidation reaction is proposed to discuss the bonding mechanism of the joint in detail.","PeriodicalId":16214,"journal":{"name":"Journal of Magnesium and Alloys","volume":"45 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnesium and Alloys","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jma.2024.12.013","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Recently, the presentation of the metal-ceramic composite structure design provides an alternative idea for the improvement of components service performance, while conventional methods for joining metals and ceramics have to involve a high heat input. However, due to the low melting point of magnesium alloys, the magnesium alloys-ceramics joining system necessitates a low joining temperature. Ultrasonic vibrations can induce numerous defects in the solid matrix, which can effectively promote atomic diffusion and metallurgical bonding between solid-phase interfaces at low temperatures. Thus, ultrasonic-assisted bonding is a highly promising method for achieving rapid and reliable joining between metals and ceramics without the use of interlayers. In this study, the direct bonding of AZ31B alloy with ZrO2 ceramic was successfully achieved at 200 °C. A polycrystal spinel MgAl2O4 with an average thickness of 55 nm was identified at the AZ31B/ZrO2 interface. The average shear strength of joints reached 30.47 MPa. Furthermore, the dynamic recrystallization of AZ31B and the oxygen-depletion behavior of ZrO2 during the bonding process were characterized to illustrate the contribution of ultrasonic vibration to joint bonding. Consequently, the solid interfacial sono-oxidation reaction is proposed to discuss the bonding mechanism of the joint in detail.
期刊介绍:
The Journal of Magnesium and Alloys serves as a global platform for both theoretical and experimental studies in magnesium science and engineering. It welcomes submissions investigating various scientific and engineering factors impacting the metallurgy, processing, microstructure, properties, and applications of magnesium and alloys. The journal covers all aspects of magnesium and alloy research, including raw materials, alloy casting, extrusion and deformation, corrosion and surface treatment, joining and machining, simulation and modeling, microstructure evolution and mechanical properties, new alloy development, magnesium-based composites, bio-materials and energy materials, applications, and recycling.