R. Buscicchio, J. Torrado, C. Caprini, G. Nardini, N. Karnesis, M. Pieroni and A. Sesana
{"title":"Stellar-mass black-hole binaries in LISA: characteristics and complementarity with current-generation interferometers","authors":"R. Buscicchio, J. Torrado, C. Caprini, G. Nardini, N. Karnesis, M. Pieroni and A. Sesana","doi":"10.1088/1475-7516/2025/01/084","DOIUrl":null,"url":null,"abstract":"Stellar-mass black-hole binaries are the most numerous gravitational-wave sources observed to date. Their properties make them suitable for observation both by ground- and space-based detectors. Starting from synthetic catalogues constructed based on observational constraints from ground-based detectors, we explore the detection rates and the characteristic parameters of the stellar-mass black-hole binaries observable by LISA during their inspiral, using signal-to-noise ratio thresholds as a detection criterion. We find that only a handful of these sources will be detectable with signal-to-noise ratio larger than 8: about 5 sources on average in 4 years of mission duration, among which only one or two are multiband ones (i.e. merging in less than 15 years). We find that detectable sources have chirp mass 10 M⊙ ≲ ℳc ≲ 100 M⊙, residual time-to-coalescence 4 yr ≲ τc ≲ 100 yr, and redshift z ≲ 0.1, much closer than those observed up to now by ground-based detectors. We also explore correlations between the number of LISA detectable sources and the parameters of the population, suggesting that a joint measurement with the stochastic signal might be informative of the population characteristics. By performing parameter estimation on a subset of sources from the catalogues, we conclude that, even if LISA measurements will not be directly informative on the population due to the low number of resolvable sources, it will characterise a few, low-redshift candidates with great precision. Furthermore, we construct for the first time the LISA waterfall plot for low chirp-mass systems, as a function of their time to coalescence and inclination. We demonstrate that LISA will also be able to discriminate and characterize, through very precise parameter estimation, a population of binaries with higher masses, ℳc ∼ 𝒪(103) M⊙, at the boundary of ground-based detectors sensitivity.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":"103 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cosmology and Astroparticle Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1475-7516/2025/01/084","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Stellar-mass black-hole binaries are the most numerous gravitational-wave sources observed to date. Their properties make them suitable for observation both by ground- and space-based detectors. Starting from synthetic catalogues constructed based on observational constraints from ground-based detectors, we explore the detection rates and the characteristic parameters of the stellar-mass black-hole binaries observable by LISA during their inspiral, using signal-to-noise ratio thresholds as a detection criterion. We find that only a handful of these sources will be detectable with signal-to-noise ratio larger than 8: about 5 sources on average in 4 years of mission duration, among which only one or two are multiband ones (i.e. merging in less than 15 years). We find that detectable sources have chirp mass 10 M⊙ ≲ ℳc ≲ 100 M⊙, residual time-to-coalescence 4 yr ≲ τc ≲ 100 yr, and redshift z ≲ 0.1, much closer than those observed up to now by ground-based detectors. We also explore correlations between the number of LISA detectable sources and the parameters of the population, suggesting that a joint measurement with the stochastic signal might be informative of the population characteristics. By performing parameter estimation on a subset of sources from the catalogues, we conclude that, even if LISA measurements will not be directly informative on the population due to the low number of resolvable sources, it will characterise a few, low-redshift candidates with great precision. Furthermore, we construct for the first time the LISA waterfall plot for low chirp-mass systems, as a function of their time to coalescence and inclination. We demonstrate that LISA will also be able to discriminate and characterize, through very precise parameter estimation, a population of binaries with higher masses, ℳc ∼ 𝒪(103) M⊙, at the boundary of ground-based detectors sensitivity.
期刊介绍:
Journal of Cosmology and Astroparticle Physics (JCAP) encompasses theoretical, observational and experimental areas as well as computation and simulation. The journal covers the latest developments in the theory of all fundamental interactions and their cosmological implications (e.g. M-theory and cosmology, brane cosmology). JCAP''s coverage also includes topics such as formation, dynamics and clustering of galaxies, pre-galactic star formation, x-ray astronomy, radio astronomy, gravitational lensing, active galactic nuclei, intergalactic and interstellar matter.