First direction sensitive search for dark matter with a nuclear emulsion detector at a surface site

IF 5.3 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Journal of Cosmology and Astroparticle Physics Pub Date : 2025-02-07 DOI:10.1088/1475-7516/2025/02/012
A. Umemoto, T. Naka, T. Shiraishi, O. Sato, T. Asada, G. De Lellis, R. Kobayashi, A. Alexandrov, V. Tioukov, N. D'Ambrosio and G. Rosa
{"title":"First direction sensitive search for dark matter with a nuclear emulsion detector at a surface site","authors":"A. Umemoto, T. Naka, T. Shiraishi, O. Sato, T. Asada, G. De Lellis, R. Kobayashi, A. Alexandrov, V. Tioukov, N. D'Ambrosio and G. Rosa","doi":"10.1088/1475-7516/2025/02/012","DOIUrl":null,"url":null,"abstract":"Fine-grained nuclear emulsion films have been developed as a tracking detector with nanometric spatial resolution to be used in direction-sensitive dark matter searches, thanks to novel readout technologies capable of exploiting this unprecedented resolution. Emulsion detectors are time insensitive. Therefore, a directional dark matter search with such detector requires the use of an equatorial telescope to absorb the Earth rotation effect. We have conducted for the first time a directional dark matter search in an unshielded location, at the sea level, by keeping an emulsion detector exposed for 39 days on an equatorial telescope mount. The observed angular distribution of the data collected during an exposure equivalent to 0.59 g days agrees with the background model and an exclusion plot was then derived in the dark matter mass and cross-section plane: cross-sections higher than 9.2 × 10-29 cm2 and 1.2 × 10-31 cm2 were excluded for a dark matter mass of 10 GeV/c2 and 100 GeV/c2, respectively. This is the first direction sensitive search for dark matter with a solid-state, particle tracking detector.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":"139 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cosmology and Astroparticle Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1475-7516/2025/02/012","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Fine-grained nuclear emulsion films have been developed as a tracking detector with nanometric spatial resolution to be used in direction-sensitive dark matter searches, thanks to novel readout technologies capable of exploiting this unprecedented resolution. Emulsion detectors are time insensitive. Therefore, a directional dark matter search with such detector requires the use of an equatorial telescope to absorb the Earth rotation effect. We have conducted for the first time a directional dark matter search in an unshielded location, at the sea level, by keeping an emulsion detector exposed for 39 days on an equatorial telescope mount. The observed angular distribution of the data collected during an exposure equivalent to 0.59 g days agrees with the background model and an exclusion plot was then derived in the dark matter mass and cross-section plane: cross-sections higher than 9.2 × 10-29 cm2 and 1.2 × 10-31 cm2 were excluded for a dark matter mass of 10 GeV/c2 and 100 GeV/c2, respectively. This is the first direction sensitive search for dark matter with a solid-state, particle tracking detector.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Cosmology and Astroparticle Physics
Journal of Cosmology and Astroparticle Physics 地学天文-天文与天体物理
CiteScore
10.20
自引率
23.40%
发文量
632
审稿时长
1 months
期刊介绍: Journal of Cosmology and Astroparticle Physics (JCAP) encompasses theoretical, observational and experimental areas as well as computation and simulation. The journal covers the latest developments in the theory of all fundamental interactions and their cosmological implications (e.g. M-theory and cosmology, brane cosmology). JCAP''s coverage also includes topics such as formation, dynamics and clustering of galaxies, pre-galactic star formation, x-ray astronomy, radio astronomy, gravitational lensing, active galactic nuclei, intergalactic and interstellar matter.
期刊最新文献
Disformal gravitational waves First direction sensitive search for dark matter with a nuclear emulsion detector at a surface site Noncanonical warm inflation with nonminimal derivative coupling Schwarzschild black hole in galaxies surrounded by a dark matter halo Chiral dark matter and radiative neutrino masses from gauged U(1) symmetry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1