Min Qi, Jianxiang Huang, Junjie Wei, Jiayin Zhou, Depeng Liu, Longqiang Li, Wuzhen Luo, Guangqiang Yin, Tao Chen
{"title":"Disturbance-Triggered Instant Crystallization Activating Bioinspired Emissive Gels","authors":"Min Qi, Jianxiang Huang, Junjie Wei, Jiayin Zhou, Depeng Liu, Longqiang Li, Wuzhen Luo, Guangqiang Yin, Tao Chen","doi":"10.1002/anie.202501054","DOIUrl":null,"url":null,"abstract":"Many marine organisms feature sensitive sensory-perceptual systems to sense the surrounding environment and respond to disturbance with intense bioluminescence. However, it remains a great challenge to develop artificial materials that can sense external disturbance and simultaneously activate intense luminescence, although such materials are attractive for visual sensing and intelligent displays. Herein, we present a new class of bioinspired smart gels constructed by integrating hydrophilic polymeric networks, metastable supersaturated salt and fluorophores containing heterogenic atoms. Upon external disturbance, the composite gels undergo an instant and reversible soft-rigid state transition, simultaneously turning on intense fluorescence and activating ultralong afterglow emission with a maximum lifetime of 877.15 ms. The experimental results and molecular dynamics simulations reveal that the disturbance-induced luminescence mainly results from the geometrical confinement of aggregated fluorophores and enhanced molecular interactions to immensely suppress the non-radiative dissipation. Given their versatile and sensitive disturbance-responsiveness, dynamic interactive painting and 3D smart optical displays are demonstrated. This study paves a new avenue to achieve disturbance-sensing soft materials and promotes the development of smart visual sensors and interactive optical displays.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"138 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202501054","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Many marine organisms feature sensitive sensory-perceptual systems to sense the surrounding environment and respond to disturbance with intense bioluminescence. However, it remains a great challenge to develop artificial materials that can sense external disturbance and simultaneously activate intense luminescence, although such materials are attractive for visual sensing and intelligent displays. Herein, we present a new class of bioinspired smart gels constructed by integrating hydrophilic polymeric networks, metastable supersaturated salt and fluorophores containing heterogenic atoms. Upon external disturbance, the composite gels undergo an instant and reversible soft-rigid state transition, simultaneously turning on intense fluorescence and activating ultralong afterglow emission with a maximum lifetime of 877.15 ms. The experimental results and molecular dynamics simulations reveal that the disturbance-induced luminescence mainly results from the geometrical confinement of aggregated fluorophores and enhanced molecular interactions to immensely suppress the non-radiative dissipation. Given their versatile and sensitive disturbance-responsiveness, dynamic interactive painting and 3D smart optical displays are demonstrated. This study paves a new avenue to achieve disturbance-sensing soft materials and promotes the development of smart visual sensors and interactive optical displays.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.