FuzzyPPI: Large-Scale Interaction of Human Proteome at Fuzzy Semantic Space

IF 7.5 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS IEEE Transactions on Big Data Pub Date : 2024-03-08 DOI:10.1109/TBDATA.2024.3375149
Anup Kumar Halder;Soumyendu Sekhar Bandyopadhyay;Witold Jedrzejewski;Subhadip Basu;Jacek Sroka
{"title":"FuzzyPPI: Large-Scale Interaction of Human Proteome at Fuzzy Semantic Space","authors":"Anup Kumar Halder;Soumyendu Sekhar Bandyopadhyay;Witold Jedrzejewski;Subhadip Basu;Jacek Sroka","doi":"10.1109/TBDATA.2024.3375149","DOIUrl":null,"url":null,"abstract":"Large-scale protein-protein interaction (PPI) network of an organism provides key insights into its cellular and molecular functionalities, signaling pathways and underlying disease mechanisms. For any organism, the total unexplored protein interactions significantly outnumbers all known positive and negative interactions. For Human, all known PPI datasets contain only <inline-formula><tex-math>$\\sim\\!\\! 5.61$</tex-math></inline-formula> million positive and <inline-formula><tex-math>$\\sim\\!\\! 0.76$</tex-math></inline-formula> million negative interactions, which is <inline-formula><tex-math>$\\sim\\!\\! 3.1$</tex-math></inline-formula>% of potential interactions. We have implemented a distributed algorithm in Apache Spark that evaluates a Human PPI network of <inline-formula><tex-math>$\\sim \\!\\! 180$</tex-math></inline-formula> million potential interactions resulting from 18 994 reviewed proteins for which Gene Ontology (GO) annotations are available. The computed scores have been validated against <i>state-of-the-art</i> methods on benchmark datasets. FuzzyPPI performed significantly better with an average F1 score of 0.62 compared to GOntoSim (0.39), GOGO (0.38), and Wang (0.38) when tested with the Gold Standard PPI Dataset. The resulting scores are published with a web server for non-commercial use at <uri>http://fuzzyppi.mimuw.edu.pl/</uri>. Moreover, conventional PPI prediction methods produce binary results, but in fact this is just a simplification as PPIs have strengths or probabilities and recent studies show that protein binding affinities may prove to be effective in detecting protein complexes, disease association analysis, signaling network reconstruction, etc. Keeping these in mind, our algorithm is based on a fuzzy semantic scoring function and produces probabilities of interaction.","PeriodicalId":13106,"journal":{"name":"IEEE Transactions on Big Data","volume":"11 1","pages":"47-58"},"PeriodicalIF":7.5000,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Big Data","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10463153/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Large-scale protein-protein interaction (PPI) network of an organism provides key insights into its cellular and molecular functionalities, signaling pathways and underlying disease mechanisms. For any organism, the total unexplored protein interactions significantly outnumbers all known positive and negative interactions. For Human, all known PPI datasets contain only $\sim\!\! 5.61$ million positive and $\sim\!\! 0.76$ million negative interactions, which is $\sim\!\! 3.1$% of potential interactions. We have implemented a distributed algorithm in Apache Spark that evaluates a Human PPI network of $\sim \!\! 180$ million potential interactions resulting from 18 994 reviewed proteins for which Gene Ontology (GO) annotations are available. The computed scores have been validated against state-of-the-art methods on benchmark datasets. FuzzyPPI performed significantly better with an average F1 score of 0.62 compared to GOntoSim (0.39), GOGO (0.38), and Wang (0.38) when tested with the Gold Standard PPI Dataset. The resulting scores are published with a web server for non-commercial use at http://fuzzyppi.mimuw.edu.pl/. Moreover, conventional PPI prediction methods produce binary results, but in fact this is just a simplification as PPIs have strengths or probabilities and recent studies show that protein binding affinities may prove to be effective in detecting protein complexes, disease association analysis, signaling network reconstruction, etc. Keeping these in mind, our algorithm is based on a fuzzy semantic scoring function and produces probabilities of interaction.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
模糊语义空间中人类蛋白质组的大规模相互作用
大型蛋白质-蛋白质相互作用(PPI)网络为生物体的细胞和分子功能、信号通路和潜在的疾病机制提供了关键的见解。对于任何生物体来说,未探明的蛋白质相互作用的总数远远超过所有已知的积极和消极的相互作用。对于人类,所有已知的PPI数据集只包含$\sim\!\!561万美元的正数和$ $ $ $ !76万美元的负面互动,这是$\sim\ \!\!3.1$%的潜在相互作用。我们在Apache Spark中实现了一种分布式算法,用于评估人类PPI网络$\sim \!\!1.8亿美元的潜在相互作用,由18 994个已审查的蛋白质产生,基因本体(GO)注释可用。计算的分数已经在基准数据集上针对最先进的方法进行了验证。与GOntoSim (0.39), GOGO(0.38)和Wang(0.38)相比,FuzzyPPI在使用黄金标准PPI数据集进行测试时表现明显更好,平均F1得分为0.62。结果分数在http://fuzzyppi.mimuw.edu.pl/上与非商业用途的web服务器一起发布。此外,传统的PPI预测方法产生二元结果,但实际上这只是一种简化,因为PPI具有优势或概率,最近的研究表明,蛋白质结合亲和力可能在检测蛋白质复合物,疾病关联分析,信号网络重建等方面有效。记住这些,我们的算法基于模糊语义评分函数并产生交互概率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
11.80
自引率
2.80%
发文量
114
期刊介绍: The IEEE Transactions on Big Data publishes peer-reviewed articles focusing on big data. These articles present innovative research ideas and application results across disciplines, including novel theories, algorithms, and applications. Research areas cover a wide range, such as big data analytics, visualization, curation, management, semantics, infrastructure, standards, performance analysis, intelligence extraction, scientific discovery, security, privacy, and legal issues specific to big data. The journal also prioritizes applications of big data in fields generating massive datasets.
期刊最新文献
2024 Reviewers List* Robust Privacy-Preserving Federated Item Ranking in Online Marketplaces: Exploiting Platform Reputation for Effective Aggregation Guest Editorial TBD Special Issue on Graph Machine Learning for Recommender Systems Data-Centric Graph Learning: A Survey Reliable Data Augmented Contrastive Learning for Sequential Recommendation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1