{"title":"Engineering of Silkworm Tyrosyl-tRNA Synthetase Variants to Create Halogenated Silk Fiber with Improved Thermal Stability.","authors":"Hidetoshi Teramoto, Yoshimi Amano, Katsura Kojima, Masatoshi Iga, Kensaku Sakamoto","doi":"10.1021/acs.biomac.4c01377","DOIUrl":null,"url":null,"abstract":"<p><p>Silk fiber, produced by the silkworm <i>Bombyx mori</i>, is a protein fiber with an excellent mechanical strength and broad biocompatibility. Multiple approaches, including genetic and chemical methods, must be combined to tailor silk fiber properties for wide applications, such as textiles and biomaterials. Genetic code expansion (GCE) is an alternative method to alter proteins' chemical and physical properties by incorporating synthetic amino acids into their primary structures. Here, we report an efficient system for selecting variants of <i>B. mori</i> tyrosyl-tRNA synthetase (BmTyrRS) used for GCE in silkworms. Four BmTyrRS variants with expanded substrate recognition toward halogenated tyrosine (Tyr) derivatives were selected, and transgenic silkworms expressing these variants were generated. The silkworms incorporated halogenated Tyr derivatives into silk fibroin to produce halogenated silk fiber with improved thermal stability. These results demonstrate the power of GCE to create protein materials with improved physical properties.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":" ","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomacromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.biomac.4c01377","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Silk fiber, produced by the silkworm Bombyx mori, is a protein fiber with an excellent mechanical strength and broad biocompatibility. Multiple approaches, including genetic and chemical methods, must be combined to tailor silk fiber properties for wide applications, such as textiles and biomaterials. Genetic code expansion (GCE) is an alternative method to alter proteins' chemical and physical properties by incorporating synthetic amino acids into their primary structures. Here, we report an efficient system for selecting variants of B. mori tyrosyl-tRNA synthetase (BmTyrRS) used for GCE in silkworms. Four BmTyrRS variants with expanded substrate recognition toward halogenated tyrosine (Tyr) derivatives were selected, and transgenic silkworms expressing these variants were generated. The silkworms incorporated halogenated Tyr derivatives into silk fibroin to produce halogenated silk fiber with improved thermal stability. These results demonstrate the power of GCE to create protein materials with improved physical properties.
期刊介绍:
Biomacromolecules is a leading forum for the dissemination of cutting-edge research at the interface of polymer science and biology. Submissions to Biomacromolecules should contain strong elements of innovation in terms of macromolecular design, synthesis and characterization, or in the application of polymer materials to biology and medicine.
Topics covered by Biomacromolecules include, but are not exclusively limited to: sustainable polymers, polymers based on natural and renewable resources, degradable polymers, polymer conjugates, polymeric drugs, polymers in biocatalysis, biomacromolecular assembly, biomimetic polymers, polymer-biomineral hybrids, biomimetic-polymer processing, polymer recycling, bioactive polymer surfaces, original polymer design for biomedical applications such as immunotherapy, drug delivery, gene delivery, antimicrobial applications, diagnostic imaging and biosensing, polymers in tissue engineering and regenerative medicine, polymeric scaffolds and hydrogels for cell culture and delivery.