Carlos A Ardila Padilla, Mariana Vignoni, Mariana P Serrano, M Laura Dántola
{"title":"Phototoxic Effects on Skin Biomolecules Induced by a Domestic Nail Polish Dryer Device.","authors":"Carlos A Ardila Padilla, Mariana Vignoni, Mariana P Serrano, M Laura Dántola","doi":"10.1021/acs.chemrestox.4c00401","DOIUrl":null,"url":null,"abstract":"<p><p>UVA radiation and visible light can lead to indirect damage to DNA, proteins, and lipids through photosensitized reactions, where a molecule undergoes a photochemical alteration by the initial absorption of radiation by another molecular entity called photosensitizer (Sens). The chemical changes undergone by biomolecules in photosensitized reactions can trigger important adverse processes such as photoallergy, phototoxicity, and skin cancer, among others. Despite the knowledge about photosensitized reactions and the fact that many endogenous compounds present in the skin can act as Sens, UVA, and visible light are widely used in several devices for domestic and general use without a thorough evaluation of their possible harmful effects; one prominent example is UV-nail polish dryers. The information in the literature about the possible damage that can be caused by using this type of radiation source is controversial. In this work, we demonstrate that the radiation dose emitted by the nail polish dryer device during a typical gel nail manicure session effectively degrades molecules present in the skin under physiological and pathological conditions. Additionally, it may induce damage to biomolecules such as proteins and lipids due to the photosensitization process, leading to the loss of their biological functions.</p>","PeriodicalId":31,"journal":{"name":"Chemical Research in Toxicology","volume":"38 1","pages":"182-192"},"PeriodicalIF":3.7000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Research in Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.chemrestox.4c00401","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/6 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
UVA radiation and visible light can lead to indirect damage to DNA, proteins, and lipids through photosensitized reactions, where a molecule undergoes a photochemical alteration by the initial absorption of radiation by another molecular entity called photosensitizer (Sens). The chemical changes undergone by biomolecules in photosensitized reactions can trigger important adverse processes such as photoallergy, phototoxicity, and skin cancer, among others. Despite the knowledge about photosensitized reactions and the fact that many endogenous compounds present in the skin can act as Sens, UVA, and visible light are widely used in several devices for domestic and general use without a thorough evaluation of their possible harmful effects; one prominent example is UV-nail polish dryers. The information in the literature about the possible damage that can be caused by using this type of radiation source is controversial. In this work, we demonstrate that the radiation dose emitted by the nail polish dryer device during a typical gel nail manicure session effectively degrades molecules present in the skin under physiological and pathological conditions. Additionally, it may induce damage to biomolecules such as proteins and lipids due to the photosensitization process, leading to the loss of their biological functions.
期刊介绍:
Chemical Research in Toxicology publishes Articles, Rapid Reports, Chemical Profiles, Reviews, Perspectives, Letters to the Editor, and ToxWatch on a wide range of topics in Toxicology that inform a chemical and molecular understanding and capacity to predict biological outcomes on the basis of structures and processes. The overarching goal of activities reported in the Journal are to provide knowledge and innovative approaches needed to promote intelligent solutions for human safety and ecosystem preservation. The journal emphasizes insight concerning mechanisms of toxicity over phenomenological observations. It upholds rigorous chemical, physical and mathematical standards for characterization and application of modern techniques.