John P. Salvas, Thomas Moore-Morris, Craig J. Goergen, Pierre Sicard
{"title":"Left atrial reservoir strain as a predictor of cardiac dysfunction in a murine model of pressure overload","authors":"John P. Salvas, Thomas Moore-Morris, Craig J. Goergen, Pierre Sicard","doi":"10.1111/apha.14277","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Aim</h3>\n \n <p>Left atrial (LA) strain is emerging as a valuable metric for evaluating cardiac function, particularly under pathological conditions such as pressure overload. This preclinical study investigates the predictive utility of LA strain on cardiac function in a murine model subjected to pressure overload, mimicking pathologies such as hypertension and aortic stenosis.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>High-resolution ultrasound was performed in a cohort of mice (<i>n</i> = 16) to evaluate left atrial and left ventricular function at baseline and 2 and 4 weeks after transverse aortic constriction (TAC). Acute adaptations in cardiac function were assessed in a subgroup of mice (<i>n</i> = 10) with 3 days post-TAC imaging.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>We report an increase in LA max volume from 11.0 ± 4.3 μL at baseline to 26.7 ± 16.7 μL at 4 weeks (<i>p</i> = 0.002) and a decrease in LA reservoir strain from 20.8 ± 5.4% at baseline to 10.2 ± 6.9% at 4 weeks (<i>p</i> = 0.001). In the acute phase, LA strain dysfunction was present at 3 days (<i>p</i> < 0.001), prior to alterations in LA volume (<i>p</i> = 0.856) or left ventricular (LV) ejection fraction (<i>p</i> = 0.120). LA reservoir strain correlated with key indicators of cardiac performance including left ventricular (LV) ejection fraction (<i>r</i> = 0.541, <i>p</i> < 0.001), longitudinal strain (<i>r</i> = −0.637, <i>p</i> < 0.001), and strain rate (<i>r</i> = 0.378, <i>p</i> = 0.007). Furthermore, markers of atrial structure and function including LA max volume (AUC = 0.813, <i>p =</i> 0.003), ejection fraction (AUC = 0.853, <i>p</i> = 0.001), and strain (AUC = 0.884, <i>p</i> < 0.001) all predicted LV dysfunction.</p>\n </section>\n \n <section>\n \n <h3> Conclusion</h3>\n \n <p>LA strain and function assessments provide a reliable, non-invasive method for the early detection and prediction of cardiac dysfunction in a model of pressure overload.</p>\n </section>\n </div>","PeriodicalId":107,"journal":{"name":"Acta Physiologica","volume":"241 2","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11737473/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Physiologica","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/apha.14277","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Aim
Left atrial (LA) strain is emerging as a valuable metric for evaluating cardiac function, particularly under pathological conditions such as pressure overload. This preclinical study investigates the predictive utility of LA strain on cardiac function in a murine model subjected to pressure overload, mimicking pathologies such as hypertension and aortic stenosis.
Methods
High-resolution ultrasound was performed in a cohort of mice (n = 16) to evaluate left atrial and left ventricular function at baseline and 2 and 4 weeks after transverse aortic constriction (TAC). Acute adaptations in cardiac function were assessed in a subgroup of mice (n = 10) with 3 days post-TAC imaging.
Results
We report an increase in LA max volume from 11.0 ± 4.3 μL at baseline to 26.7 ± 16.7 μL at 4 weeks (p = 0.002) and a decrease in LA reservoir strain from 20.8 ± 5.4% at baseline to 10.2 ± 6.9% at 4 weeks (p = 0.001). In the acute phase, LA strain dysfunction was present at 3 days (p < 0.001), prior to alterations in LA volume (p = 0.856) or left ventricular (LV) ejection fraction (p = 0.120). LA reservoir strain correlated with key indicators of cardiac performance including left ventricular (LV) ejection fraction (r = 0.541, p < 0.001), longitudinal strain (r = −0.637, p < 0.001), and strain rate (r = 0.378, p = 0.007). Furthermore, markers of atrial structure and function including LA max volume (AUC = 0.813, p = 0.003), ejection fraction (AUC = 0.853, p = 0.001), and strain (AUC = 0.884, p < 0.001) all predicted LV dysfunction.
Conclusion
LA strain and function assessments provide a reliable, non-invasive method for the early detection and prediction of cardiac dysfunction in a model of pressure overload.
期刊介绍:
Acta Physiologica is an important forum for the publication of high quality original research in physiology and related areas by authors from all over the world. Acta Physiologica is a leading journal in human/translational physiology while promoting all aspects of the science of physiology. The journal publishes full length original articles on important new observations as well as reviews and commentaries.