Effect of oscillating magnetic field (OMF) on the supercooling behavior of iron-oxide nanoparticle (IONP) agar model system

IF 3.2 2区 农林科学 Q2 FOOD SCIENCE & TECHNOLOGY Journal of Food Science Pub Date : 2025-01-20 DOI:10.1111/1750-3841.17653
Amanda Joya, Dongyoung Lee, Taiyoung Kang, Marisa M. Wall, Soojin Jun
{"title":"Effect of oscillating magnetic field (OMF) on the supercooling behavior of iron-oxide nanoparticle (IONP) agar model system","authors":"Amanda Joya,&nbsp;Dongyoung Lee,&nbsp;Taiyoung Kang,&nbsp;Marisa M. Wall,&nbsp;Soojin Jun","doi":"10.1111/1750-3841.17653","DOIUrl":null,"url":null,"abstract":"<p>Freezing extends the shelf life of foods but often leads to structural damage due to ice crystal formation, negatively impacting quality attributes. Oscillating magnetic field (OMF)-assisted supercooling has emerged as a potential technique to overcome these limitations by inhibiting ice nucleation and maintaining foods in a supercooled state. Despite its potential, the effectiveness and underlying mechanisms of OMF-assisted supercooling remain subjects of debate. In this study, the effects of OMF on the supercooling behavior of an agar-based food model system containing iron(III)-oxide nanoparticles (IONP) were investigated. Agar samples containing IONPs at various concentrations (3, 6, 12 and 15 mg per 100 mL) were prepared to simulate the presence of ferric materials responsive to OMF. The samples were exposed to an external OMF (10 mT, 10 Hz) at −8°C for 24 h. Higher supercooling probabilities were achieved in the IONP-containing samples, with probabilities of 75%, 75%, and 90% for the 3 mg, 6 mg, and 12 mg concentrations, respectively. In contrast, lower supercooling probabilities of 60% and 55% were exhibited by the control samples (without nanoparticles) and samples containing zinc nanoparticles (ZNPs), respectively. It is suggested that the enhanced supercooling stability in IONP samples is due to the interaction between the magnetic nanoparticles and the OMF, inhibiting ice nucleation possibly through the magneto-mechanical motion affecting water molecule orientation and hydrogen bonding networks.</p>","PeriodicalId":193,"journal":{"name":"Journal of Food Science","volume":"90 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Science","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1750-3841.17653","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Freezing extends the shelf life of foods but often leads to structural damage due to ice crystal formation, negatively impacting quality attributes. Oscillating magnetic field (OMF)-assisted supercooling has emerged as a potential technique to overcome these limitations by inhibiting ice nucleation and maintaining foods in a supercooled state. Despite its potential, the effectiveness and underlying mechanisms of OMF-assisted supercooling remain subjects of debate. In this study, the effects of OMF on the supercooling behavior of an agar-based food model system containing iron(III)-oxide nanoparticles (IONP) were investigated. Agar samples containing IONPs at various concentrations (3, 6, 12 and 15 mg per 100 mL) were prepared to simulate the presence of ferric materials responsive to OMF. The samples were exposed to an external OMF (10 mT, 10 Hz) at −8°C for 24 h. Higher supercooling probabilities were achieved in the IONP-containing samples, with probabilities of 75%, 75%, and 90% for the 3 mg, 6 mg, and 12 mg concentrations, respectively. In contrast, lower supercooling probabilities of 60% and 55% were exhibited by the control samples (without nanoparticles) and samples containing zinc nanoparticles (ZNPs), respectively. It is suggested that the enhanced supercooling stability in IONP samples is due to the interaction between the magnetic nanoparticles and the OMF, inhibiting ice nucleation possibly through the magneto-mechanical motion affecting water molecule orientation and hydrogen bonding networks.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
振荡磁场(OMF)对氧化铁纳米粒子(IONP)琼脂模型体系过冷行为的影响
冷冻可以延长食品的保质期,但由于冰晶的形成,往往会导致食品的结构损坏,对食品的质量属性产生负面影响。振荡磁场(OMF)辅助过冷已经成为一种潜在的技术,可以通过抑制冰核和保持食物处于过冷状态来克服这些限制。尽管具有潜力,但omf辅助过冷的有效性和潜在机制仍然是争论的主题。在这项研究中,研究了OMF对含有氧化铁纳米粒子(IONP)的琼脂基食品模型体系过冷行为的影响。制备了不同浓度(每100 mL 3、6、12和15 mg)的琼脂样品,以模拟铁材料对OMF的反应。样品在-8°C下暴露于外部OMF (10 mT, 10 Hz) 24小时。在含有ionp的样品中获得了更高的过冷概率,在3 mg, 6 mg和12 mg浓度下分别为75%,75%和90%。相比之下,对照样品(不含纳米粒子)和含有锌纳米粒子(ZNPs)的样品的过冷概率分别为60%和55%。研究结果表明,IONP样品的过冷稳定性增强是由于磁性纳米颗粒与OMF相互作用,可能通过磁机械运动影响水分子取向和氢键网络来抑制冰核。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Food Science
Journal of Food Science 工程技术-食品科技
CiteScore
7.10
自引率
2.60%
发文量
412
审稿时长
3.1 months
期刊介绍: The goal of the Journal of Food Science is to offer scientists, researchers, and other food professionals the opportunity to share knowledge of scientific advancements in the myriad disciplines affecting their work, through a respected peer-reviewed publication. The Journal of Food Science serves as an international forum for vital research and developments in food science. The range of topics covered in the journal include: -Concise Reviews and Hypotheses in Food Science -New Horizons in Food Research -Integrated Food Science -Food Chemistry -Food Engineering, Materials Science, and Nanotechnology -Food Microbiology and Safety -Sensory and Consumer Sciences -Health, Nutrition, and Food -Toxicology and Chemical Food Safety The Journal of Food Science publishes peer-reviewed articles that cover all aspects of food science, including safety and nutrition. Reviews should be 15 to 50 typewritten pages (including tables, figures, and references), should provide in-depth coverage of a narrowly defined topic, and should embody careful evaluation (weaknesses, strengths, explanation of discrepancies in results among similar studies) of all pertinent studies, so that insightful interpretations and conclusions can be presented. Hypothesis papers are especially appropriate in pioneering areas of research or important areas that are afflicted by scientific controversy.
期刊最新文献
Deoxynivalenol modulated mucin expression and proinflammatory cytokine production, affecting susceptibility to enteroinvasive Escherichia coli infection in intestinal epithelial cells Preparation of poly (butylene adipate-co-terephthalate)/clove essential oil composite antimicrobial film as biodegradable packaging for strawberry preservation Low-pressure cold plasma pretreatment: Impact on quality attributes of “Fan Retief” guava and efficacy against Colletotrichum gloeosporioides Research progress on the diversity, physiological and functional characteristics of lactic acid bacteria in the Nongxiangxing baijiu microbiome The physicochemical characteristics and functional properties of steam explosion modified wheat bran in vitro and in vivo
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1