Evaluation of methoxyflavones as dengue NS2B-NS3 protease inhibitors: an in silico and in vitro studies.

IF 3.9 2区 化学 Q2 CHEMISTRY, APPLIED Molecular Diversity Pub Date : 2025-01-22 DOI:10.1007/s11030-024-10899-5
Nur Farhana Mustafa, Kian-Kai Cheng, Siti Aisyah Razali, Habibah A Wahab, Nurul Hanim Salin, Iffah Izzati Zakaria, Muhammad Helmi Nadri
{"title":"Evaluation of methoxyflavones as dengue NS2B-NS3 protease inhibitors: an in silico and in vitro studies.","authors":"Nur Farhana Mustafa, Kian-Kai Cheng, Siti Aisyah Razali, Habibah A Wahab, Nurul Hanim Salin, Iffah Izzati Zakaria, Muhammad Helmi Nadri","doi":"10.1007/s11030-024-10899-5","DOIUrl":null,"url":null,"abstract":"<p><p>Dengue is one of the most prevalent viruses transmitted by the Aedes aegypti mosquitoes. Currently, no specific medication is available to treat dengue diseases. The NS2B-NS3 protease is vital during post-translational processing, which is a key target in this study. Due to methoxy group substitution, methoxyflavones are more bioavailable and metabolically stable than hydroxylated flavones. To date, research on the anti-dengue activity of methoxyflavones is limited. Hence, this work aims to determine the inhibitory activity of methoxyflavones against the dengue NS2B-NS3. Methoxyflavones derivatives were screened using molecular docking. The result showed a strong binding interaction of compound 1 and compound 2 with NS2B-NS3 protease. Both compounds exhibited comparable binding energy as the reference compound, quercetin, with values lower than - 8.1 kcal/mol. Molecular dynamics simulation using GROMACS revealed the stability and stiffness of the complexes over a 100 ns time scale. In addition, an in vitro assay for NS2B-NS3 protease inhibition revealed inhibitory effects of compounds 1 and 2 with IC<sub>50</sub> values of 316.80 µM and 463.30 µM, respectively. The ADMET analyses showed favorable pharmacokinetics profiles that comply with Lipinski's Rule of Five. Collectively, our findings suggest that compounds 1 and 2 inhibit dengue NS2B-NS3 activity. These findings hold promise of methoxyflavones as starting compounds for potential dengue treatment, highlighting the need for further investigation.</p>","PeriodicalId":708,"journal":{"name":"Molecular Diversity","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Diversity","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11030-024-10899-5","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Dengue is one of the most prevalent viruses transmitted by the Aedes aegypti mosquitoes. Currently, no specific medication is available to treat dengue diseases. The NS2B-NS3 protease is vital during post-translational processing, which is a key target in this study. Due to methoxy group substitution, methoxyflavones are more bioavailable and metabolically stable than hydroxylated flavones. To date, research on the anti-dengue activity of methoxyflavones is limited. Hence, this work aims to determine the inhibitory activity of methoxyflavones against the dengue NS2B-NS3. Methoxyflavones derivatives were screened using molecular docking. The result showed a strong binding interaction of compound 1 and compound 2 with NS2B-NS3 protease. Both compounds exhibited comparable binding energy as the reference compound, quercetin, with values lower than - 8.1 kcal/mol. Molecular dynamics simulation using GROMACS revealed the stability and stiffness of the complexes over a 100 ns time scale. In addition, an in vitro assay for NS2B-NS3 protease inhibition revealed inhibitory effects of compounds 1 and 2 with IC50 values of 316.80 µM and 463.30 µM, respectively. The ADMET analyses showed favorable pharmacokinetics profiles that comply with Lipinski's Rule of Five. Collectively, our findings suggest that compounds 1 and 2 inhibit dengue NS2B-NS3 activity. These findings hold promise of methoxyflavones as starting compounds for potential dengue treatment, highlighting the need for further investigation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
甲氧基黄酮作为登革热NS2B-NS3蛋白酶抑制剂的评价:计算机和体外研究。
登革热是由埃及伊蚊传播的最普遍的病毒之一。目前,没有专门的药物可用于治疗登革热。NS2B-NS3蛋白酶在翻译后加工过程中起着至关重要的作用,是本研究的关键靶点。由于甲氧基取代,甲氧基黄酮比羟基黄酮具有更高的生物利用度和代谢稳定性。迄今为止,对甲氧基黄酮抗登革热活性的研究有限。因此,本研究旨在确定甲氧基黄酮对登革热NS2B-NS3的抑制活性。利用分子对接技术筛选甲氧基黄酮衍生物。结果表明,化合物1和化合物2与NS2B-NS3蛋白酶具有较强的结合相互作用。两种化合物的结合能均低于- 8.1 kcal/mol,与参比化合物槲皮素的结合能相当。利用GROMACS进行分子动力学模拟,揭示了配合物在100 ns时间尺度上的稳定性和刚度。此外,体外NS2B-NS3蛋白酶抑制实验显示,化合物1和2的IC50值分别为316.80µM和463.30µM。ADMET分析显示良好的药代动力学符合利平斯基的五法则。总之,我们的研究结果表明,化合物1和2抑制登革热NS2B-NS3活性。这些发现为甲氧基黄酮作为潜在登革热治疗的起始化合物带来了希望,强调了进一步研究的必要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Diversity
Molecular Diversity 化学-化学综合
CiteScore
7.30
自引率
7.90%
发文量
219
审稿时长
2.7 months
期刊介绍: Molecular Diversity is a new publication forum for the rapid publication of refereed papers dedicated to describing the development, application and theory of molecular diversity and combinatorial chemistry in basic and applied research and drug discovery. The journal publishes both short and full papers, perspectives, news and reviews dealing with all aspects of the generation of molecular diversity, application of diversity for screening against alternative targets of all types (biological, biophysical, technological), analysis of results obtained and their application in various scientific disciplines/approaches including: combinatorial chemistry and parallel synthesis; small molecule libraries; microwave synthesis; flow synthesis; fluorous synthesis; diversity oriented synthesis (DOS); nanoreactors; click chemistry; multiplex technologies; fragment- and ligand-based design; structure/function/SAR; computational chemistry and molecular design; chemoinformatics; screening techniques and screening interfaces; analytical and purification methods; robotics, automation and miniaturization; targeted libraries; display libraries; peptides and peptoids; proteins; oligonucleotides; carbohydrates; natural diversity; new methods of library formulation and deconvolution; directed evolution, origin of life and recombination; search techniques, landscapes, random chemistry and more;
期刊最新文献
Discovery of selective ROCK2 inhibitors with free radical scavenging ability for the treatment of gouty arthritis. Targeting cyclin-dependent kinase 11: a computational approach for natural anti-cancer compound discovery. Optimizing kinase and PARP inhibitor combinations through machine learning and in silico approaches for targeted brain cancer therapy. Anti-TMV activity based flavonol derivatives containing piperazine sulfonyl: Design, synthesis and mechanism study. Apigenin-mediated MARK4 inhibition: a novel approach in advancing Alzheimer's disease therapeutics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1